Wireless LAN 101

Osama I Al-Dosary (dosary@solyton.com)
Agenda

• Wireless LAN Standards
• WLAN Technology and Design
• IEEE 802.11n
• CAPWAP and Centralized Wireless
• Wireless Mesh and AWPP (dot11s)

*Many of the slide source material from Cisco
WIRELESS LAN STANDARDS
The Virtuous Standards Cycle

- Standardization
- Market Growth
- Innovation
Types of Standards Bodies

<table>
<thead>
<tr>
<th>Organization</th>
<th>Primary Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute of Electrical and Electronics Engineers (IEEE) www.ieee.org</td>
<td>Development of Hardware Standards</td>
</tr>
<tr>
<td>Internet Engineering Task Force (IETF) www.ietf.org</td>
<td>Development of Software Standards</td>
</tr>
<tr>
<td>Wi-Fi Alliance www.wi-fi.org</td>
<td>‘Marketing’ of Technical Standards</td>
</tr>
</tbody>
</table>
‘Marketing’ Names for 802.11 Standards

<table>
<thead>
<tr>
<th>Wi-Fi Alliance Interoperability Name</th>
<th>IEEE 802.11 Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wi-Fi Certified™</td>
<td>802.11 / a / b / g</td>
</tr>
<tr>
<td>Wi-Fi Protected Access™ (WPA v1 & v2)</td>
<td>802.11i</td>
</tr>
<tr>
<td>Wi-Fi MultiMedia™ (WMM)</td>
<td>802.11e</td>
</tr>
</tbody>
</table>
Standards Terminology

When is a Standard not a Standard?
• Does it have a completion date in the past?
• Does it use the word ‘Ratified’?

Look out for words like:
• Pre-standard
• Draft ‘x’
• Expected to be compliant
• De Facto Standard
802.11 Ratified Standards

<table>
<thead>
<tr>
<th>Task Group</th>
<th>Description</th>
<th>Ratified</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11</td>
<td>Base MAC and PHY Specifications</td>
<td>1999</td>
</tr>
<tr>
<td>802.11a</td>
<td>5GHz OFDM PHY (Radio)</td>
<td>1999</td>
</tr>
<tr>
<td>802.11b</td>
<td>2.4GHz DSSS PHY (Radio)</td>
<td>1999</td>
</tr>
<tr>
<td>802.11d</td>
<td>Additional Regulatory Domains (World Mode)</td>
<td>2001</td>
</tr>
<tr>
<td>802.11g</td>
<td>Data Rate Extension for 2.4GHz</td>
<td>2003</td>
</tr>
<tr>
<td>802.11h</td>
<td>Spectrum Management for 5GHz in Europe</td>
<td>2003</td>
</tr>
<tr>
<td>802.11i</td>
<td>Data Plane Security Extensions</td>
<td>2004</td>
</tr>
<tr>
<td>802.11j</td>
<td>4.9-5.0GHz Operation in Japan</td>
<td>2004</td>
</tr>
<tr>
<td>802.11e</td>
<td>QoS Extensions</td>
<td>2005</td>
</tr>
<tr>
<td>802.11k</td>
<td>Radio Resource Management</td>
<td>2008</td>
</tr>
<tr>
<td>802.11r</td>
<td>Fast Roaming</td>
<td>2008</td>
</tr>
<tr>
<td>802.11n</td>
<td>High Throughput</td>
<td>2009</td>
</tr>
<tr>
<td>802.11s</td>
<td>Mesh Networking</td>
<td>2011</td>
</tr>
</tbody>
</table>
Current State of 5GHz Bridging Spectrum

US (FCC)
- **Conducted Power**
 - Tx Output Power: 20 dBm
- **Spectral Mask Designators (20 MHz)**
 - UNII-1: 17 dBm
 - UNII-2: 24 dBm

Europe (ETSI)
- **Radiated Power**
 - EIRP (with Antenna): 30 dBm (1W)
- **Dynamic Frequency Selection (DFS)**
- **Target Power Control (TPC)**

Saudi Arabia (CITC)
- **Radiated Power**
 - EIRP (with Antenna): 30 dBm (1W)
- **DFS + TPC**

Designators
- 2 Channels
 - 4.94
 - 4.99
 - 5.15
 - 5.25
 - 5.35
 - 5.470
 - 5.725
 - 5.825

- 4 Channels
 - 5 Channels
 - 11 Channels

- 4 Channels
 - UNII-3, 30 dBm

TBD: To Be Determined
Radio Waves

- Waves attributes include frequency and wavelength
- Radio devices operate in bands or a designated frequency ranges

5GHz ~ 6 cm
2.4 GHz ~ 12 cm

Frequency = \(f = \frac{V}{\lambda} \) (m/sec)

1 Cycle (\(\lambda \))
1 Second

2 Cycles in 1 Second = 2 Hertz
Multipath

- Ceiling
- TX
- RX
- Floor
- Obstruction

Received Signals
- Time
- Combined Results
- Time
Null Signals

1 Cycle (λ) 6cm/12cm

Delayed
By $\lambda/2$

Null Signal
Diversity

• In a multipath environment, signals null points are located throughout the area

• Moving the antenna slightly will allow you to move out of a null point and receive the signal correctly

Dual Antennas Typically Means if One Antenna Is in a Null, the Other One Will Not be, therefore Providing Better Performance in Multi-path Environments
Wireless LAN (WLAN)

- A WLAN is a shared RF network
- An Access Point is a shared device and functions like a shared Ethernet hub.
- An AP typically has a wired Ethernet interface
- Uses CSMA/CA protocol
- The same radio frequency is used for sending and receiving (transceiver)
WLAN Speeds & Frequencies

- **802.11b**: 2.4 GHz (ISM) 11 Mbps
- **802.11a**: 5 GHz (UNII-1, -2 & -3) 54 Mbps
- **802.11g**: 2.4 GHz 54 Mbps
- **802.11n**: 2.4/5 GHz 150 Mbps

IEEE 802.11a/b Ratified
IEEE 802.11g Ratified
802.11n

Jan’99 Jan’00 Jan’01 Jan’02 Jan’03 Jan’04 Jan’08 Jan’09
802.11b/g Channels (2.4 GHz ISM-ITU Range)

- Non-overlapping channels should be used when deploying WLAN
- Non-overlapping channels have 22 MHz of separation (at least 5 channels apart)
- There are 3 non-overlapping channels in the 2.4 GHz frequency range (channels 1, 6, 11)
 - Channel 14 can be used as a fourth non-overlapping channel for Japan when using 802.11b access points
IEEE 802.11b/g Channel Allocations

- 5 MHz Channel separation
- 22-MHz-wide stationary channels
- 3 nonoverlapping channels (1, 6, and 11)
- 3 APs can occupy same area - set at different frequencies
802.11b/g Channel Mapping Design

15-20% Overlap
Increasing Capacity by Design

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Users</th>
<th>Access Points</th>
<th>Per AP Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Antenna Power: 30mW</td>
<td>200</td>
<td>3</td>
<td>67</td>
</tr>
<tr>
<td>Reduce Antenna power to 5mW</td>
<td>200</td>
<td>18</td>
<td>11</td>
</tr>
</tbody>
</table>
802.11a Channels – U-NII 1,2 & 3

- 12 non-overlapping channels: 8 indoor, 4 outdoor
- 8 APs can occupy same area - set at different frequencies
- 60-MHz-wide stationary channels
- 20 MHz Channel separation
802.11a Channel Mapping Design

Ch 36 Ch 149 Ch 56 Ch 48

Ch 52 Ch 44 Ch 161 Ch 60

15-20% Overlap
802.11a/b/g Comparison

Range

<table>
<thead>
<tr>
<th>Data Rates</th>
<th>802.11g</th>
<th>802.11a</th>
</tr>
</thead>
<tbody>
<tr>
<td>54 Mbps</td>
<td>32 m</td>
<td>26 m</td>
</tr>
<tr>
<td>48 Mbps</td>
<td>55 m</td>
<td>46 m</td>
</tr>
<tr>
<td>36 Mbps</td>
<td>79 m</td>
<td>64 m</td>
</tr>
<tr>
<td>24 Mbps</td>
<td>87 m</td>
<td>70 m</td>
</tr>
<tr>
<td>18 Mbps</td>
<td>100 m</td>
<td>79 m</td>
</tr>
<tr>
<td>12 Mbps</td>
<td>108 m</td>
<td>85 m</td>
</tr>
<tr>
<td>11 Mbps</td>
<td>111 m</td>
<td></td>
</tr>
<tr>
<td>9 Mbps</td>
<td>116 m</td>
<td>94 m</td>
</tr>
<tr>
<td>6 Mbps</td>
<td>125 m</td>
<td>100 m</td>
</tr>
<tr>
<td>5.5 Mbps</td>
<td>130 m</td>
<td></td>
</tr>
<tr>
<td>2 Mbps</td>
<td>136 m</td>
<td></td>
</tr>
<tr>
<td>1 Mbps</td>
<td>140 m</td>
<td></td>
</tr>
</tbody>
</table>

Typical indoor ranges measured using an AP1242AG with 2.2-dBi dipole antenna for 2.4 GHz, and 3.5-dBi omnidirectional antenna for 5 GHz.
IEEE 802.11N

High Throughput
802.11n Standard

- Official amendment name: “high throughput”
- IEEE 802.11n standard officially ratified September 2009
- Had a lot of pre-standard activity
- WFA created a certification of 802.11n draft 2.0 products mid-2007
802.11n Throughput Improvements

<table>
<thead>
<tr>
<th>MIMO</th>
<th>Dual Channel</th>
<th>MAC Efficiency</th>
</tr>
</thead>
</table>
| • Maximal Ration Combining
 • Beam Forming
 • Spatial Multiplexing | • Two Adjacent 20MHz Channels for a Single a 40MHz Channel | • Packet Aggregation
 • Block Ack |

- 5x higher throughput
- More reliable and predictable coverage
- Backwards compatibility with 802.11a/b/g clients
MIMO Overview

Maximal Ratio Combining
- Performed by receiver
- Combines multiple received signals
- Increases receive sensitivity
- Works with non-MIMO and MIMO clients

Transmit beam forming
- Performed by transmitter
- Ensures signal received in phase
- Increases receive sensitivity
- Works with non-MIMO and MIMO clients

Spatial Multiplexing
- Transmitter and receiver participate
- Multiple antennas txmt concurrently on same channel
- Increases bandwidth
- Requires MIMO client
40-MHz Channels and Packet Aggregation

40-MHz Channels:
802.11n supports both 20- and 40-MHz wide channels
Wider channels mean more BW per AP
(not per physical location)

Auto Analogy:
Twice the traffic lanes, twice the cars

Packet Aggregation:
Combine multiple data units into one frame
Saves on 802.11n and MAC overhead

Auto Analogy:
Car pooling is more efficient than driving by yourself

Without Packet Aggregation

<table>
<thead>
<tr>
<th>802.11n Overhead</th>
<th>Data Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Packet</td>
</tr>
</tbody>
</table>

With Packet Aggregation

<table>
<thead>
<tr>
<th>802.11n Overhead</th>
<th>Data Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Packet</td>
</tr>
<tr>
<td></td>
<td>Packet</td>
</tr>
<tr>
<td></td>
<td>Packet</td>
</tr>
</tbody>
</table>
More consistent, reliable coverage

• Higher mean throughput, more reliable connections for each client
 – Consistent throughput and coverage
 – Better reliability, better user experience
 – Fewer help desk calls
CONTROL AND PROVISIONING OF WIRELESS ACCESS POINTS
CAPWAP

- CAPWAP Protocol
- Business Class Reliability
- Radio Resource Management
Lessons From Cellular Networks...

- CAPWAP is an IETF standard ratified July 2007
- Was originally called LWAPP before standardized (or Light Weight Access Point Protocol)

Access, Control, and Traffic Forwarding must be separated from one another to build scalable, reliable wireless networks

Access
Cell sites are made up of base stations that contain numerous pieces of radio equipment (e.g., antennas) for communicating with mobile devices.

Management/Control
Base stations are connected to controllers, which are used to handle call setup, handovers, and other functions across an entire cellular network.

Control and Signaling

Internet
CAPWAP Architecture

- Security policies
- QoS policies
- RF management
- Mobility management

- Remote RF interface
- MAC layer encryption

Division of Labor
Split MAC

Controller MAC Functions
- 802.11 MAC mgmt: (Re)association requests and action frames
- 802.11 Data: Encapsulate and sent to AP
- 802.11e resource reservation: Control protocol carried to AP in 802.11 mgmt frames—signaling done in the controller
- 802.11i authentication and key exchange

AP MAC Functions
- 802.11: Beacons, probe response, auth (if open)
- 802.11 control: Packet ack and retransmission (latency)
- 802.11e: Frame queuing and pkt prioritization (access to RF)
- 802.11i: Encryption in AP
Understanding WLAN Controllers
The WLAN Controller as a Network Device

- **WLAN Controller**
 - For wireless end-user devices, the controller is a 802.1Q bridge that takes traffic of the air and puts it on a VLAN.
 - From the perspective of the AP, the controller is an CAPWAP Tunnel end-point with an IP address.
 - From the perspective of the network, it’s a Layer-2 device connected via one or more 802.1Q trunk interfaces.
- The AP connects to an access port—no concept of VLANs at the AP.
CAPWAP Adds AP Redundancy for Mission Critical Mobility

- Maximized system availability
 - Controller redundancy
 - Access point failover
- System level management automates failover to guarantee availability

Benefits
- No single point of failure
- Automated network failover decreases support and downtime costs
- Wireless network reliability on par with wired
CAPWAP Radio Resource Management
Real-Time RF Management

- The RF domain is an ever changing environment
 - Users are mobile
 - Interference prone
- The controller has a system level view of the RF domain and adjusts individual access points to optimize coverage and network availability

Benefits
- An optimized RF environment allows for superior application performance and higher network availability
- Complete RF management without specialized RF skills
- No RF recalibration required – decreased support costs
IEEE 802.11S WIRELESS MESH

Adaptive Wireless Path Protocol (AWPP)
AWPP Path Selection Solution Components
Radio Roles

Roof Top Access Point (RAP) mode-
- Wired LWAPP connection to the Controller
- RAP has only backhaul interface, and we do not recommend RAP to have local client access
- More than one RAP for the same Mesh for Redundancy

Pole Top Access Point (MAP) mode-
- No wired connection for Mesh
- Wired connection for Bridging (P2P or P2MP)
- Communicating directly to RAP, or to other MAPs and eventually to RAP
- Support wireless clients
Adaptive Wireless Path Protocol (AWPP)

IEEE 802.11s

- Self-configuring, Self-healing
- Dynamic, Intelligent Path Selection
- AWP establishes and maintains an optimal path to RAP
- Each MAP carries possible successors if topology or link health changes
- Cisco AWP is part of the IEEE 802.11s committee (SEE Mesh)
Routing uses a concept of ‘Ease’ (preferred path is highest ‘Ease’)

- Combination of
 - SNR
 - Hop Value
 - And coefficient, based on various SNR thresholds

- Adjusted Ease = \(\frac{\text{Min Ease at Each hop}}{\text{Hop Count}} \)

- 20% premium to selected parent to prevent flopping (SNR smoothing)
- Loop detection and prevention mechanism
Questions