How to sleep tight and keep your
applications running on IPv6
transition

The importance of IPv6 Application
Testing

About this presentation

* |t presents a generic methodology to test the
IPv6 functionality of applications

* The methodology is based on Software Testing
methodologies and practical experience
deploying IPv6

 We present an example of how to test an
application

Did you know?

RIR IPv4 Address Run-Down Model

30 T 1 T T 1 1 T 1
: : AFRINIC e
APNIC e
ARIN e
RIPE NCC
25 LACNIC —
20
w
©
S
(@]
o
g 15 L
()]
=
pe]
<T
o
10
|
0 e | | _—I — [——
2008 2010 2012 2014 2016 2018 2020 2022 2024
Date

Source: http://www.potaroo.net/tools/ipv4/

IPv6

Taking off slowly but steady

Major content providers, large transit
providers and network equipment vendors
support it

Slow adoption in access and mobile providers

OS in users and servers and major applications
are ready

But,
Is your application ready for IPv6?

Migrating Applications to IPv6

* Applications made with high level SDKs should
work just fine (i.e. Android, iOS, etc.)

 Be aware of hard coded literals (they are bad,
very bad practice, even for IPv4)

* Check your datastore needs. Do you need to
store IPv4? Then you may need IPv6

— Remember, 32 vs. 128 bits!

Migrating Applications to IPv6

* |f you are programming at “low-level” use
dual-stack methods, examples:

— socket.inet ntop (DS)instead of
socket.inet ntoa (IPv4 only)in Python

— Generic socket instead of sockaddr in inC

— Java, sockets are automatically ported, but not
use Tnet4dAddress

Application Testing for IPv6

* |f you want to avoid failing to your users when
using IPv6b you need to test your apps

* We made a methodology based on software
testing principles and our knowledge on IPv6

 The idea was to test extensible and
methodologically all our applications before
going to production using IPv6

Test Planning

Phases

Test
Designing
Testing
execution
Test
Configuration

Test
evaluation

Test Planning

Decide what are you, and what are you NOT to
test

Be familiar and document the architecture of
your system or application

ldentify interfaces and frontiers
Prioritize functionalities

Test Planning

Test Designing

* You define your testing strategy for each item
that you want to test

— i.e. Planned testing vs. exploratory testing
* Define test cases and experiments

e Some tests:

— IPv6 parsers, test different IPv6 combinations: full
IPv6 addresses, compressed format, try wrong
combinations, try ULAs and Global

Test Designing (cont.)

 Some tests (cont.)

— Communication among components, e.g.
database and application server

— System and environment. Validations, network
components

 Validate

Test Designin Define Validate
gning Strategy tests

Test Configuration

* Test environments; IPv4 only, IPv6 only

— |solate and/or filter interfaces to avoid non
desired traffic

— Analyse traffic

— Disable IPv4 or IPv6 accordingly or plan to use
firewalls/filters

Test Configuration (cont.)

e Document test and results
— Observations, differences between v4 and v6

— Throughput, delays, problems

Test Configuration .IPV4 .IPVG
Environment Environment

Testing Execution

* Try your designed test in IPv4
— This is your benchmark

— Detect early problems here, so they won’t be
“linked” with IPv6

— Look for long delays and document them

* Try your designed test in IPv6

— Try exhaustively all your items
— Verify that IPv4 is not affecting your test

Testing Execution (cont.)

* Try your designed test in IPv6 (cont).
— Detect long delays and document
— Document all your response times for further
analysis

* |f you find problems, fix them and try again
(regression tests)

Test Evaluation

* Collect all the data that your tests generated

* |[Pv6 Latency, throughput, etc. should be
similar than IPv4

e Use your experience for future tests and
migration on other applications

Testing an application to manage IP
Addresses

* First, an inventory of your components

Component State

Apache 2.2 OK
Tomcat 6 OK
MySQL 5 OK
Linux (Kernel 2.16.19) OK
Jboss 4 OK
JRE 1.6.0 OK

The architecture of our application

IPv6 support
here, in the
datastore

&

I\:u:u:u:u — :

Database-1

IPv6 here, for » (2 g_]
the end-user $ Database-2
IPv6 here, for

component’s

communication

Webserver Application
Server Server

We define which components to
evaluate and the test to perform

We define to evaluate IPv6 in the user front
and also in internal communication between
components

IPv6 support in the datastore was required

IPv6 support was required in almost all the
input forms

Application logging
Performance

Your test inventory

User Module Id | Name IPv6 Priority | Observations Strategy
New IP address _
_ 1 High PLAN
End U Object Management, range
nauser input data 2 | Update IP range Medium EXPL
3 | Review IP Ranges | High PLAN
_ 4 | Configure object Medium PLAN
Configuration - -
) 5 | Configure system | Medium EXPL
Admin
Datastore 6 | Backup Low EXPL
management 7 | Backup Low EXPL

An Example of a testing sheet

Priority Sessions
User Module Id Name IPv6 Observations| IPv4 |Sessions IPv6
There is
processing with
New ROA HIGH the IP. Check
parser of IP Mauricio Mauricio
Normal 9 addresses 20120620 20120622
Check that IP
List ROAs MEDIUM |2ddressesare . .
ROA displayed Mauricio Mauricio
Normal Management 10 correctly 20120620 |20120622
There is
processing with
IP addresses the IP. Check
. HIGH
in ROAs parser of IP
addresses. Try
several formats |Mauricio Mauricio
Normal 11 valid and invalid 20120620 20120622

Case 1: The random turtle

Some users reported the app to be very slow ...
sometimes. We reproduced it in production.

But testing environment was perfect. We review code,
components, etc.

We found that it was an IPv6 problem hidden by
Happy-Eye-Balls (RFC) in some browsers.

We checked all production components (network,
server, apache) and all ok ... except that sysadmin
forgot to enable v6 in JBOSS

Tip: Have an ipv4-only hostname (just A record) and an
ipv6-only (just AAAA) it would make your
troubleshooting easier.

Case 2: The creepy IPv6 Address

One user reported that the app crashed after
introducing their IPv6 address (or prefix)

After some digging we found that his prefix
was something like: 2001:db8:1::1::/48 (Can
you spot the error?)

Neither the input or the core components
were validating all the cases of IPv6 syntax

Tip: Validate all the cases of IPv6 syntax. They
are trickier than in IPv4

Case 3: Literals are bad (literally)

An old third party application that we were
testing. Apparently very simple (just web) it did
not work at all.

After some code digging and network sniffing we
found literals in the code (IPv4 addresses
hardcoded in the app)

To make the app work in IPv6 it needed some
hard work

Tip: IPv6 literals are bad, much worse IPv4
because even simple apps won’t work on some
transition technologies (i.e. NAT64)

Conclusions

* Testing software is a good practice, it may not
be easy, pretty or cheap. But is it good

* Faceit, IPv4 is running out and you need to
support IPv6 and better now than late

* |f you want to sleep thigh, test your apps with
IPv6

