The evolution of IPv6 transition technologies

APIPv6TF, APNIC 35

Innovative solutions for tomorrow's challenges

Jouni Korhonen Renesas Mobile Corporation

The evolution of IPv6 transition technologies 27 February 2013

Overview

- IETF has worked on a plethora of IPv6 transition mechanisms.
- The activity is still ongoing trying to address different types on deployment scenarios.
- There is still need to provide IPv4 access and extend IPv4 lifetime when ISPs deploy IPv6 in their backbone.
- This presentation goes through recent IPv6 transition activities in IETF. We do not repeat the existing technologies..

Evolution of IPv6 transition technologies in IETF

Original picture modified with the permission of Ole Troan

Common trends for recent work @ IETF

- Offer IPv4 end user service over IPv6(-only) ISP backbone.
- Assume dual-stack service for customers.
- IPv4 lifetime extension either using A+P or making end user IPv4 number "insignificant".
- Push (NAT44) state at the customer edge.
- Keep the ISP core as stateless as possible (i.e., no NAT44 state in core). Per subscriber forwarding/binding state is OK since it is rather static; use anycast for reaching ISP border nodes if just technology allows it.
- Allow both mesh or hub & spoke modes of operation.
- Figure out the mechanisms for CPE provisioning and automated bootstrapping.. Oh.. someone is paying attention to operational aspects!

Public 4over6.. (draft-ietf-softwire-public-4over6)

- Public 4over6 is a per-subscriber stateful, IPv4-over-IPv6 tunnel mechanism.
- The mechanism follows hub and spokes softwire model, and uses IPv4-over-IPv6 tunnel between end host or CPE and border relay (BR).
- The binding between the allocated IPv4 address and the end user's IPv6 address are maintained on the border relay for encapsulation usage.
- The BR also works as a DHCPv4 over IPv6 [I-D.ietf-dhc-dhcpv4-over-ipv6] server/relay for assigning public IPv4 address to 4over6 CEs.

Stateless DS-Lite.. (draft-penno-softwire-sdnat)

- The approach presented here is stateless in AFTR and deterministic. AFTR is stateless as NAT44 bindings are maintained on the CPE (B4 in "end host"). Good for logging.
- Per-subscriber mapping (IPv4 address + port range) to DS-Lite IPv6 tunnel in AFTR.
- ICMP port restricted message send when a source transmit a packet with a source port outside of the pre-authorized range. The ICMP message informs the source of the actual port range allocated.

Lightweight 4over6.. (draft-cui-softwire-b4-translated-dslite)

- It is quite similar to Stateless DS-Lite and Public 4over6..
- Lightweight 4over6 provides a solution for a hub-and-spoke softwire architecture only.
- An IwB4 is implemented on a dual-stack capable node, supports A+P (for sharing IPv4 address), implements NAT44 functionality.
- An IwAFTR is an IPv4-in-IPv6 tunnel endpoint and maintains per-subscriber A+P binding only and does not perform a NAT44 function.
- The provisioning system, which tells the lwB4 which IPv4 address and port set to use e.g. using DHCP, PCP or TR-69.

XLAT464.. (draft-ietf-v6ops-464xlat)

Renesas Mobile

MAP-E / -T (draft-ietf-softwire-map & -t)

Renesas Mobi

Summary

There is no limit on engineering possibilities and innovation ;-)

Renesas Mobile

www.renesasmobile.com

©2012 Renesas Mobile Corporation. All rights reserved.