BLT
BGP Label based Tunneling

Gunter Van de Velde
Sr Technical Leader
NOSTG, Cisco Systems

December 2012
What is it?

• It is a new “IP” network overlay technology

• Can be seen as alternative for MPLS based upon BGP as scalable and proven control plane

• Within the Core ISP network, no more need for full routing table

• The network overlay mechanism is tunnel technology agnostic (LISP, GRE, L2TP, IPinIP, VxLAN, etc)

• BGP based Dynamic tunnelling works Intra- and Inter-domain

• Expected convergence time: <100msec
Motivation?

- Address family (IPv4, IPv6, VPNv4, VPNv6, IP+Label) agnostic
- Usage of proven and highly scalable Internet technologies (BGP, PIC, LFA, etc…)
- BGP database carries tunnel end-points and identifiers as ships in the night to the traditional BGP routing BGP table
- Cost optimization by getting rid of:
 - Core MPLS control plane
 - Internet and customer prefixes from core
- Usage of BGP technology:
 - Fast Convergence
 - High scalability
 - High availability
 - VPN Support
 - Highly secure by utilisation of BGP security technologies (RPKI Origin Authentication, TCP-AO, etc..)
 - BGP Remote-Next-Hop (http://datatracker.ietf.org/doc/draft-vandevelde-idr-remote-next-hop/)

- Usage of VxLAN, GRE, LISP, IP-in-IP tunnels
 - Utilization of scalable and existing tunnel technology
 - Connect IPv6/IPv4 islands over an IPv6/IPv4 infrastructure for both Inter- and Intra-AS networks
 - Utilization of existing tunnel policy and RIB population mechanisms
 - Service differentiation: enable premium exit vs best-effort exit to Internet by Network Policy

- Backward compatible and support for gradual implementation
Toolset for BGP based Dynamic Tunnelling

- Other tunnel technologies: GRE, VxLAN, IP-in-IP, etc…
- BGP Route-Reflection (RFC4456)
- Cisco Prefix Independent Convergence
- BGP Diverse Path (RFC6774)
- BGP/MPLS VPN (RFC4364)
Address Distribution

Customer 1a 1.1.1.0/24
Customer 1b 1.1.2.0/24
Customer 1c 1.1.7.0/24
Customer 2a 1.1.3.0/24
Customer 2b 1.1.4.0/24
Customer 3a 1.1.5.0/24
Customer 3b 1.1.6.0/24

RR

IP Core 2.2.2.0/24 2001:db8::/64

Next-Hop: 2.2.2.3/32 2001:db8::3/128
Next-Hop: 2.2.2.4/32 2001:db8::4/128
Next-Hop: 2.2.2.5/32 2001:db8::5/128
Next-Hop: 2.2.2.6/32 2001:db8::6/128
Next-Hop: 2.2.2.7/32 2001:db8::7/128

iBGP

© 2012 Cisco and/or its affiliates. All rights reserved.
Address Distribution

- **Core**
 - IGP: OSPF, EIGRP, ISIS
 - MPLS Free Core
 - BGP only is run only on the core edge and BGP RR support of IGP LFA

- **Edge**
 - Location of the Tunnel in-/egress router
 - BGP NLRI is used as remote network identifier and the attached BGP Remote-Next-Hop as Locator
 - Forwarding in-/egress policy enforcement
 - Multi-tunnel loadsharing

- **Customer Networks**
 - Autonomous networks
 - DC, finance, IT department, engineering, customers, etc…
 - Independent address family agnostic address space
 - Customer networks and services are network identifiers
BGP Remote-Next-Hop Attribute

- NLRI (Network Layer Reachability Information) is the customer network
- Next-hop is the traditional BGP Next-Hop used for traditional IP forwarding
- Remote-Next-Hop is the Tunnel End-Point used for dynamic tunnel based forwarding (Optional BGP transitive attribute)
- Multiple NLRI can point to identical Remote-Next-Hop
Address Distribution: BGP Table at xTR1

BGP Table

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next-Hop</th>
<th>Remote-Next-Hop</th>
<th>Tunnel Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.2.0/24</td>
<td>2.2.2.2</td>
<td>2.2.2.2</td>
<td>GRE</td>
</tr>
<tr>
<td>1.1.3.0/24</td>
<td>2.2.2.3</td>
<td>1.10.3.3</td>
<td>GRE</td>
</tr>
<tr>
<td>1.10.3.3/32</td>
<td>2.2.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.4.0/24</td>
<td>2.2.2.4</td>
<td>2.2.2.4</td>
<td>VxLAN</td>
</tr>
<tr>
<td>1.1.5.0/24</td>
<td>2.2.2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.6.0/24</td>
<td>2.2.2.7</td>
<td>2001:db8::7</td>
<td>IP-in-IPv6</td>
</tr>
<tr>
<td>1.1.7.0/24</td>
<td>2.2.2.6</td>
<td>2001:db8::6</td>
<td>GRE</td>
</tr>
</tbody>
</table>

© 2012 Cisco and/or its affiliates. All rights reserved.
Traditional BGP Forwarding

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next-Hop</th>
<th>Remote-Next-Hop</th>
<th>Tunnel Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.2.0/24</td>
<td>2.2.2.2</td>
<td>2.2.2.2</td>
<td>GRE</td>
</tr>
<tr>
<td>1.1.3.0/24</td>
<td>2.2.2.3</td>
<td>1.10.3.3</td>
<td>GRE</td>
</tr>
<tr>
<td>1.10.3.3/32</td>
<td>2.2.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.4.0/24</td>
<td>2.2.2.4</td>
<td>2.2.2.4</td>
<td>VxLAN</td>
</tr>
<tr>
<td>1.1.5.0/24</td>
<td>2.2.2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.6.0/24</td>
<td>2.2.2.7</td>
<td>2001:db8::7</td>
<td>IP-in-IPv6</td>
</tr>
<tr>
<td>1.1.6.0/24</td>
<td>2.2.2.5</td>
<td>2001:db8::7</td>
<td>IP-in-IPv6</td>
</tr>
<tr>
<td>1.1.7.0/24</td>
<td>2.2.2.6</td>
<td>2001:db8::6</td>
<td>GRE</td>
</tr>
</tbody>
</table>

© 2012 Cisco and/or its affiliates. All rights reserved.
Traditional BGP Forwarding

Customer 1a
1.1.1.0/24

Next-Hop:
2.2.2.1/32
2001:db8::1/128

Customer 1b
1.1.2.0/24

Next-Hop:
2.2.2.4/32
2001:db8::4/128

Customer 1c
1.1.3.0/24

Next-Hop:
2.2.2.4/32
2001:db8::4/128

Customer 2a
1.1.4.0/24

Customer 2b
1.1.4.0/24

Customer 3a
1.1.5.0/24

Customer 3b
1.1.6.0/24

Customer 3c
1.1.7.0/24

Router with Full BGP Table
Tunnel Based Forwarding: Case 1
Reduction of Core state and size of routing table

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next-Hop</th>
<th>Remote-Next-Hop</th>
<th>Tunnel Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.2.0/24</td>
<td>2.2.2.2</td>
<td>2.2.2.2</td>
<td>GRE</td>
</tr>
<tr>
<td>1.1.3.0/24</td>
<td>2.2.2.3</td>
<td>1.10.3.3</td>
<td>GRE</td>
</tr>
<tr>
<td>1.10.3.3/32</td>
<td>2.2.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.4.0/24</td>
<td>2.2.2.4</td>
<td>2.2.2.4</td>
<td>VxLAN</td>
</tr>
<tr>
<td>1.1.5.0/24</td>
<td>2.2.2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.6.0/24</td>
<td>2.2.2.7</td>
<td>2001:db8::7</td>
<td>IP-in-IPv6</td>
</tr>
<tr>
<td>1.1.6.0/24</td>
<td>2.2.2.5</td>
<td>2001:db8::7</td>
<td>IP-in-IPv6</td>
</tr>
<tr>
<td>1.1.7.0/24</td>
<td>2.2.2.6</td>
<td>2001:db8::6</td>
<td>GRE</td>
</tr>
</tbody>
</table>
Tunnel Based Forwarding: Case 1
Reduction of Core state and size of routing table

Core only needs routing information for **tunnel endpoints**
Tunnel Based Forwarding: Case 2
Reduction of Core state and size of routing table

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next-Hop</th>
<th>Remote-Next-Hop</th>
<th>Tunnel Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.2.0/24</td>
<td>2.2.2.2</td>
<td>2.2.2.2</td>
<td>GRE</td>
</tr>
<tr>
<td>1.1.3.0/24</td>
<td>2.2.2.3</td>
<td>1.10.3.3</td>
<td>GRE</td>
</tr>
<tr>
<td>1.1.4.0/24</td>
<td>2.2.2.4</td>
<td>2.2.2.4</td>
<td>VxLAN</td>
</tr>
<tr>
<td>1.1.5.0/24</td>
<td>2.2.2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.6.0/24</td>
<td>2.2.2.7</td>
<td>2001:db8::7</td>
<td>IP-in-IPv6</td>
</tr>
<tr>
<td>1.1.6.0/24</td>
<td>2.2.2.5</td>
<td>2001:db8::7</td>
<td>IP-in-IPv6</td>
</tr>
<tr>
<td>1.1.7.0/24</td>
<td>2.2.2.6</td>
<td>2001:db8::6</td>
<td>GRE</td>
</tr>
</tbody>
</table>
Tunnel Based Forwarding: Case 2
Reduction of Core state and size of routing table

Core only needs routing information for tunnel endpoints
Tunnel Based Forwarding: Case 3
IPv4 over IPv6 enabled core

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next-Hop</th>
<th>Remote-Next-Hop</th>
<th>Tunnel Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.2.0/24</td>
<td>2.2.2.2</td>
<td>2.2.2.2</td>
<td>GRE</td>
</tr>
<tr>
<td>1.1.3.0/24</td>
<td>2.2.2.3</td>
<td>1.10.3.3</td>
<td>GRE</td>
</tr>
<tr>
<td>1.10.3.3/32</td>
<td>2.2.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.4.0/24</td>
<td>2.2.2.4</td>
<td>2.2.2.4</td>
<td>VxLAN</td>
</tr>
<tr>
<td>1.1.5.0/24</td>
<td>2.2.2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.6.0/24</td>
<td>2.2.2.7</td>
<td>2001:db8::7</td>
<td>IP-in-IPv6</td>
</tr>
<tr>
<td>1.1.6.0/24</td>
<td>2.2.2.5</td>
<td>2001:db8::7</td>
<td>IP-in-IPv6</td>
</tr>
<tr>
<td>1.1.7.0/24</td>
<td>2.2.2.6</td>
<td>2001:db8::6</td>
<td>GRE</td>
</tr>
</tbody>
</table>
Tunnel Based Forwarding: Case 3
IPv4 over IPv6 enabled core

Core only needs routing information for IPv6 tunnel endpoints and IPv4 BGP endpoints

Tunnelled IP Packet – IP-in-IPv6 Header

© 2012 Cisco and/or its affiliates. All rights reserved.
Tunnel Based Forwarding: Case 4
IPv4 over IPv6 enabled core

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next-Hop</th>
<th>Remote-Next-Hop</th>
<th>Tunnel Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.2.0/24</td>
<td>2.2.2.2</td>
<td>2.2.2.2</td>
<td>GRE</td>
</tr>
<tr>
<td>1.1.3.0/24</td>
<td>2.2.2.3</td>
<td>1.10.3.3</td>
<td>GRE</td>
</tr>
<tr>
<td>1.1.4.0/24</td>
<td>2.2.2.4</td>
<td>2.2.2.4</td>
<td>VxLAN</td>
</tr>
<tr>
<td>1.1.5.0/24</td>
<td>2.2.2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.6.0/24</td>
<td>2.2.2.7</td>
<td>2001:db8::7</td>
<td>IP-in-IPv6</td>
</tr>
<tr>
<td>1.1.6.0/24</td>
<td>2.2.2.5</td>
<td>2001:db8::7</td>
<td>IP-in-IPv6</td>
</tr>
<tr>
<td>1.1.7.0/24</td>
<td>2.2.2.6</td>
<td>2001:db8::8</td>
<td>GRE</td>
</tr>
</tbody>
</table>
Tunnel Based Forwarding: Case 4
IPv4 over IPv6 enabled core

Core only needs routing information for IPv6 tunnel endpoints and IPv4 BGP endpoints

Tunneled IP Packet – IPv4 in IPv6 Header

Next-Hop: 2.2.2.1/32 2001:db8::1/128
Conclusion

- BGP based Dynamic Tunnelling is allows a single IP based control base
- High scalability due to proven BGP technology
- Fast Convergence due to proven BGP and IGP tuning technology
- Network core devices enjoy reduction in the size of the BGP table
- BGP based Dynamic Tunnelling allows virtualisation based upon IP technology
- IPv4 and IPv6 agnostic
- Incremental implementation is supported
- BGP based Security is supported and scalable
Thank You