Seeing The Past, Present and Future:
Macro Trends in Networking and the
Role of Software Defined
Networking

David Meyer
CTO and Chief Scientist, Brocade
Director, Advanced Technology Center, University of Oregon
Apricot 2013
Singapore
dmm@{brocade.com,uoregon.edu,1-4-5.net,...}
http://www.1-4-5.net/~dmm/talks/apricot2013.pdf

Agenda

Context: SDN Problem Space and Hypothesis

(Macro) Trends Inducing an New Landscape

The Past: How We Got Here

The Present: What Exactly is the Current State of Affairs?
The Future: Where’s it All Going

Summary and Q&A if we have time

Danger Will Robinson!!!

!

: @3 . 3 ‘
= = 8 ! 1
S . '
= 3
< “‘!
s 2 '
) : 1L \I
a o) : S
. ' N

—_—
-~
-
—

;.v' \

|]Wlllm

2
/u

This talk is intended to be controversial/provocative
(and a bit “sciencey”)

What | Hope To Achieve

| hope to convince you that uncertainty and
volatility are the “coin of the realm” of the
future, why this is the case, how SDN (and
the rise of software in general) is accelerating
this effect, and finally, what we might do

to take advantage of it.}

1 s/take advantage of/survive/ -- @smd

First, What is the SDN Problem Space?

Network architects, engineers and operators are being presented with the
following challenge:

— Provide state of the art network infrastructure and services while minimizing
TCO

SDN Hypothesis: It is the lack of ability to innovate in the underlying network
coupled with the lack of proper network abstractions results in the inability to
keep pace with user requirements and to keep TCO under control.

— Is this true? Hold that question...

Note future uncertain: Can’t “skate to where the puck is going to be” because
curve is unknowable (this is a consequence, as we will see, of the “software
world” coupled with Moore’s law and open-loop control).

— That s, there is quite a bit of new research that suggests that such uncertainty is inevitable

So given this hypothesis, what was the problem?

Maybe this is the problem?

NST In The Wild
“Enterprise Corporate Network”

Federation of N ST Probes Running “Snort” IDS
with a backend N ST MySQL Database Server, Apache Web
Server and BASE (Basic Analysis and Secunty Engine)

J

ST Honeypot NST fiquration |

- glztgl ccl:?'fg;? 850MHz NST - 's?ﬁ'cpﬁ1 51»2011? H=

» 256MB RAM probe6 s 154008 Disk

» 1x10/100 NICs NST Probe7 | 2X10/100/1000 NICs
NST N ST Probe2 10222 avsnar \®_1xUSB Storage Device

probes ozmzzonaes \ “Snort Collector” &

Honeypot H-:-artbeat‘ “MySQL Datstase, USE Storage Devics

¢ W 2 - “Thumb Drive”
Snort IDS Apache (HTTFD) & BASE

HA
Firewalls Snort IDS
(VRRF)
{ Managemen
Switch _
Servers
{(Email'We by NST |5 | i
C—_—;_c:grr{-‘-..:rlzas} probe3 Snort IDS IDS/FirewalNetwork'Sysem/PKI|
Management
Corporate
Portal —
) . p.
{Security Zone: 2) Switch \)y
Ve
- e
3. ’ s /
Servers N - s
{Internal Web/Datsbasa/ nort ID
" Applicasons/Badkup) : Intranet

= {Security Zone: 4)
NST IDS Configuration

Intel P4 1GH=z

e S2x CDROM

e 512MB RAM
-
-

Business

1x10/100/1000 NIC
1x10/100 NIC

Or This?

Connection Manager

Developer Tools

Mobility
Client
-
s)
Networks)
SSL
SMS + Paging |-
WAP -

Many protocols, many touch points, few open interfaces or abstractions,..

O o o 0 0 0O 0O

$3|1J0Jd UOID8ULOY) + S|020)0Jd

SUON2BUUOY YIOMIBN BIqON

ol o (@ O|[O][O]]|O

Authentication + Encryption

Compression + Optimization

NAT + Packet Filtering

Mobile VPN + Roaming

HTTP/SSL + Single Sign On

Messaging Services

dWNS + Buibbo ‘Bununoooy

Buusisn) + Buoue|eg peo + dWOYH

suonedlddy

WAP Proxy + WAP Push Gateway

Distributed Administration

Network is Fragile, but is that the problem? BTW, what is fragility/robustness?

Robusthess vs. Complexity
Systems View

R Domain of the Robust

Domain of the fragile

Pumax

Increasing number of policies, protocols, configurations and interactions
>

Can we characterize the Robust and the Fragile?

Robustness and Fragility

Definition: A [property] of a [system] is robust if it is [invariant] with respect to a [set
of perturbations], up to some limit

Fragility is the opposite of robustness
— If you're fragile you depend on 2nd order effects (acceleration)

— A bit more on this in a sec...

A system can have a property that is robust to one set of perturbations and yet
fragile for a different property and/or perturbation = the system is Robust Yet
Fragile (RYF-complex) [O]

— Or the system may collapse if it experiences perturbations above a certain threshold (K-fragile)

Example: A possible RYF tradeoff is that a system with high efficiency (i.e., using
minimal system resources) might be unreliable (i.e., fragile to component failure) or
hard to evolve

[0] http://www.istar.upenn.edu/osw/white paper/John Doyle White Paper.pdf

System Properties as Robustness

Reliability is robustness to component failures
Efficiency is robustness to resource scarcity

Scalability is robustness to changes to the size and
complexity of the system as a whole

Modularity is robustness to structure component
rearrangements

Evolvability is robustness of lineages to changes on
long time scales

Fragility and Scaling

(geeking out for a sec...)

* A bit of a formal description of fragility
— Let z be some stress level, p some property, and
— Let H(p,z) be the (negative valued) harm function
— Then for the fragile the following must hold

* H(p,nz) < nH(p,z) for0<nz<K
* Kisthe level at which the system collapses (K-fragility)
* This inequality is importantly not mean preserving (Jensen’s Inequality)
* Not mean preserving: H(p,(z, + z,)/2) != (H(p,z,) + H(p,z,))/2
— 2> model error and hence additional uncertainty

 For example, a coffee cup on a table suffers non-linearly more from large deviations
(H(p, nz)) than from the cumulative effect of smaller events (nH(p,z))
— Sothe cup is damaged far more from (i.e., destroyed by) tail events than those within a few o of the mean
— Too theoretical? Perhaps, but consider: ARP storms, micro-loops, congestion collapse, AS 7007, ...
— BTW, nature requires this property
— For example, if you jump off something 1 foot high 30 times v/s jumping off something 30 feet high once

* When we say something scales like O(n?), what we mean is the damage to the network
has constant acceleration (2) for weird enough n (i.e., outside say, 10 o)

— Thatis, you suffer non-linear harm from tail events

What Does The Fragility Curve Look Like?

Non-linear exposure to harmful event = Concavity

A matching linear
exposure would be
very volatile for small
variations.

Graphic courtesy [Talab2012]

What Is Antifragility?

« Antifragility is not the opposite of fragility
— Robustness is the opposite of fragility
— Antifragile systems improve as a result of [perturbation]

 Metaphors

— Fragile: Sword of Damocles
* Upper bound: No damage
* Lower bound: Completely destroyed

» The cumulative effect of small perturbations is smaller than the single effect
of a large perturbation — dependence on second order effects

— Robust: Phoenix
e Upper bound == lower bound == no damage
— Antifragile: Hydra
* Lower bound: Robust
* Upper bound: Becomes better as a result of perturbations (within bounds)

 More detail on this later (if we have time)

So What Then is Complexity?

“In our view, however, complexity is most
succinctly discussed in terms of functionality
and its robustness. Specifically, we argue that
complexity in highly organized systems arises
primarily from design strategies intended to
create robustness to uncertainty in their
environments and component

parts.” [AldersonDoyle2010]

Back to Macro Trends

The Evolution of Intelligence

Precambrian (Reptilian) Brain to Neocortex - Hardware to Software

Cerebellum—

Medulla ="

Architectural Themes Its all about code
* Thin-waist architectures (more on this in a sec)
. Massively distributed BTW, while we're talking about evolution, the Punctuated
* Highly layered with Robust Control loops Equilibrium model of evolution [Gould & Eldredge1977]
e Component Reuse depends on the existence of just the kind of tail events |

described earlier.

Thin Waists 101: The Bowtie Architecture

Idea from biological systems theory
Constraints that Deconstrain

input sl COre === output

high variability high variability
less constraints less constraints

more constraints
less variability

many
many

few

For example, the reactions and metabolites of core
metabolism, e.g., ATP metabolism, Krebs/Citric Acid
cycle signaling networks, ...

See, e.g., Doyle, et. al., “Architecture, Constraints, and Behavior”,
http://www.pnas.org/content/108/suppl.3/15624.full

input === core mmmmd output

But Wait a Second

Anything Look Familiar?

>
=
(]
£

high variability
less constraints

more constraints
less variability
few

high variability
less constraints

>
=
(2]
£

Bowtie Architecture

email WWW phone...

\SMTP HTTP RTP... }

TCP uop./

.(

ethernet PP%

{ CSMA async sonet\

copper fibre radio...

Hourglass Architecture

BTW, there’s Component behavior gratuitously
an apparent — uncertain, yet systems have robust

erformance.
paradox P
Transcription/
Mutati translation
utation Microtubules
Neurogenesis
Angiogenesis
Immune/pathogen
Chemotaxis
Selection Tcp
Darwinian evolution uses selection on
random mutations to create complexity. Regulatory
feedback
Network folks use what, exactly?
control

Everything De-silos

Vertical -> Horizontal Integration
Open {APIs, Protocols, Source}
Everything Pluggable

Future is about Ecosystems

Network Centric =2 IT Centric

APPLICATIONS INTERNE T

\ <secVURITY /
? 5
DATABASE

3 SOPPORT
iNFORMATION __ucrens
v\ T ECHNO LOG I
/ NETWORK

SOFTWARE \ DEVELOPMENT

DESIGN compuUTER '
COMMUNIC AT ION

Shift in influence and speed
Shift in locus of purchasing influence

Changes in cost structures
— ETSI NfV, ATIS, IETF, ...

NetOPs = DevOPs

Other Important Macro Trends

Everything Virtualizes
— Well, we’ve seen this

Data Center new “center” of the universe
— Looks like ~ 40% of all traffic is currently sourced/sinked in a DC
— Dominant service delivery point

Integrated orchestration of almost everything

Bottom Line: Increasing influence of software *everywhere*
— All integrated with our compute, storage, identities, ...

— Increasing compute, storage, and network “power” = increasing
volatility/uncertainty

The Past: Ok, How Did We Get Here?

Basically, everything networking was too vertically integrated, tightly coupled, non-standard.
Goes without saying that this made the job of the network researcher almost impossible.

Question: What is the relationship between the job of the network researcher and
the task of fielding of a production network?

(in)SANE

The Genesis of Nox

SANE Ethane Nox
@ Network A) 1 Poli a
[AFeiIeSyste?n] [Corzg:il);r J [SANE][Ethane]| |
[Host tracking] [Host tracking] f[Host tracking P

| topology | topology |

| Openflow v 2.0 |, (Openflowv-10]/ {)

| ssssss ssasas | msasss sssses
1 S

Salient features: Open interface to forwarding plane, separation of control and data planes

Slide courtesy Martin Cassado

So What was Ethane?

Ethane: Addressing the Protection Problem in
Enterprise Networks

Martin Casado
Michael Freedman
Glen Gibb

Lew Glendenning
Dan Boneh

Nick McKeown
Scott Shenker
Gregory Watson

Presented By: Martin Casado
PhD Student in Computer Science,
Stanford University

casado@cs.stanford.edu
http://www.stanford.edu/~casado

A Little Later...OpenFlow
(Gates 104 Crew)

Scope of OpenFlow Switch Specification

OpenFlow
D, Switch _f . Controller
: Secure OpenFlow FEE
) Protocol
Switch Model —— | W Channel*""%&sc‘)'?' _E;

Figure 1: Idealized OpenFlow Switch. The Flow
Table is controlled by a remote controller via the
Secure Channel.

OpenFlow Switch, v 1.0

Scope of OpenfFlow Switch Specification

OpenFlow
D Switch o : Controller

S OpenFIow
w SSCcUre Protocol
llllllllll.l
Channel aol

Figure 1: Idealized OpenFlow Switch. The Flow
Table is controlled by a remote controller via the

Secure Channel.

Again, salient features: Open interface to the forwarding plane, separation of control and

data planes, “centralized” control = Great for researchers, but what about production networks?

And BTW, is this (architecturally) the same as the breaking down of vertical integration in the compute world?

Flow Table
Rule Action -

: 1. Forward packet to port(s)
. 2. Encapsulate and forward to controller
. 3. Drop packet
. 4. Send to normal processing pipeline

Switch| MAC | MAC Eth VLAN IP IP IP TCP TCP

Port src dst type ID Src Dst Prot | sport | dport
+ mask

Mainframe Business Model

Central Logic Manufacture
*Proprietary & closely
guarded

_+Single source

Central Logic Manufacture
*Standard design (x86)
*Multiple source

*AMD, Intel, Via, ...

Finished Hardware Supply
*Proprietary & closely
guarded

_+Single source

Finished Hardware Supply
*Standard design
*Multiple source
*Dell, SGI, HP, IBM

System Software Supply
*Proprietary & closely
guarded

|_Single source

System Software Supply
eLinux (many
distros/support)
*Windows & other

Application Stack
*Not supported
*No programming tools

proprietary offerings

.NQ 3rd nan” ECQSMSIEI:Q

Application Stack
*Public/published APIs
*High quality prog tools

.Blch 3rd party ecosystem

Net Equipment
Example:

Commodity Server

* Juniper EX 8216 (used in core or aggregation layers)
* Fully configured list: $716k w/o optics and $908k with optics

* Solution: Merchant silicon, H/W independence, open source protocol/mgmt stack

Graphic courtesy James Hamilton,
http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_POA20101026_External.pdf

Early OF/SDN Architecture

Well-defined open API o
. Control Applications

Separation of
Control and Data

Planes, “Centralized”
Control Plane

\ Open interface to hardware (OF)

Packet Forwarding
Hardware

Packet Forwarding
Hardware

Packet Forwarding

Hardware

Packet Forwarding
Hardware

Packet Forwarding

Hardware Graphic courtesy Nick Mckeown

Logically Centralized?

Application Application
A
Instance 1 Instance 2
Global Network‘ Network Forwarding 3
View » State Adjustment

State Ctrl 1 E N s § Ctrl 2 E
Mgmt ez = t@

Physical Network : o : Network Forwarding

State Collection E » State Adjustment s
< = >
P c = i \'&‘ c
swl sw2

Figure 1: SDN state distribution and management conceptu-
alized in layers: (A)pplication, (S)tate Management, (P)hysical
Network

Key Observation: Logically centralized = distributed system > tradeoffs between
control plane convergence and state consistency model. And what about the loss of
control plane/data plane fate sharing?

Graphic courtesy Levin, D., et. al., “Logically Centralized? State Distribution Trade-offs in Software Defined Networks?”,
HotSDN 2012, http://conferences.sigcomm.org/sigcomm/2012/paper/hotsdn/pl.pdf

BTW, Nothing New Under The Sun...

Separation of control and data planes is not a new idea. Examples include:
— SS7

— lIpsilon Flow Switching
* Centralized flow based control, ATM link layer
* GSMP (RFC 3292)

— AT&T SDN

* Centralized control and provisioning of SDH/TDM networks

— Asimilar thing happened in TDM voice to VOIP transition

» Softswitch - Controller
* Media gateway = Switch
e H.248 - Device interface

* Note 2" order effect: This was really about circuit = packet

— ForCES

» Separation of control and data planes
* RFC 3746 (and many others)

OpenFlow Switch Model Version 1.0

Redirect to Controller

A
Encapsulate packet to controller
Apply actions _
Packet > Flow Table S Forward with
(TCAM) edits
: \4
Too simple:
Drop

- Feature/functionality
- Expressiveness — consider shared table learning/forwarding bridge

The Present: Current (ONF) SOA

Ingress
Packet port
In) Table
0
Action
Set ={}
——

Packet +
ingress port +

metadata
—>

Action
Set

Table

OpenFlow Switch

Table

n

Packet
Packet . EXG?“te : Out
gtlon . Set
et

(a) Packets are matched against multiple tables in the pipeline

* Why this design? Combinatorics...

* Consider complexity: ~ O(n! * a2")) paths

n = number of tables, a = number of actions, | = width of match fields

 Too Complex:

What is a flow?

Not naturally implementable on ASIC h/w

Breaks new reasoning systems
No fixes for the lossy abstractions

Architectural que

stions

Emerging:

- SDN Continuum
- |ETF, ETSI, ATIS, ...

So question: Is the flow-based
abstraction “right” for general
network programmability?

A Simplified View of the SDN Continuum

May be repeated
(stacked or recursive)

So The Future: Where’s it All Going?

But More Seriously....

High order bit:
— System(s) we’re building are inherently uncertain = cloudy crystal balls
— Architect for change and rapid evolution — see XP/Agile methodologies for a clue
— Increasing roles for s/w and programmability + Moore’s law = volatility/uncertainty
— Lucky thing for many of us: we work primarily around the narrow waist, most stable place to be
— “Above the waist” characterized by uncertainty, e.g., http://spotcloud.com/

Conventional Technology Curves —S & F
— Moore’s Law and the reptilian brain

e -——-\\
Someone eventually has to forward packets on the wire /N R
— 400G and 1T in the “near” term eocortex
_ o . - -, - -
Silicon optics, denser core count, /ZLﬁlmbicr’ '

The future is all about Ecosystems ') &
— Open Interfaces: Protocols, APIs, Code, Tool Chains S—— :
— Open Control Platforms at every level \
— “Best of Breed” markets
— And again, more volatility/uncertainty injected into system as a whole

BTW, open source/open source consortia dominate
— And what is the role of standards bodies in the age of Open Source?

So what might such an ecosystem/platform look like?

Ecosystem Platform Schematic

czs ;ss saTlé'SJf)rce a[[')g;'on.com.

Services
Platform Plugin Framework (e.g., OSGi)

FNILTVIY

Network Abstraction -
Core Functionality

e —— . o
Openflow Classify/Forward Services Engines

Plugin Management -

Other

NERPEICS Real Time

Programmatic Interfaces

——————————————————————————

robi

o
=
(V2]
| -
>
O
Q
[

Stack View

Services Layer (GOTOM, IM/Presence, Video, Mobility, ...)
APIs, Plugins, and Protocols
Cloud/Tenant Orchestration, Services, Management

APIs, Plugins, and Protocols

SP, Campus, and Data Center Orchestration

Overlays, VPNS, Network Slicing

Distributed Routing and Peering
APIs, Plugins, and Protocols

Virtual and Physical Forwarding Resources, Compute and Storage

Summary — What are our Options?

. Be conservative with the narrow waist -- constraints that deconstrain
— We're pretty good at this

— Reuse parts where possible (we’re also pretty good at this; traceroute a canonical example)

Expect uncertainty and volatility from above
— Inherent in software, and importantly, in acceleration
* We know the network is RYF-complex so we know that for H(p,x), the “harm” function, d?H(p,x)/dx? # 0
* When you architect for robustness, understand what fragilities have been created
— = Software (SDN or http://spotcloud.com or ...) is inherently non-linear, volatility, and uncertain

* We need to learn to live with/benefit from the non-linear, random, uncertain

. DevOps

* Develop our understanding bottom up (by “tinkering”)
— Actually an “Internet principle”. We learn incrementally...
— Avoid the top-down (in epistemology, science, engineering,...)
— Bottom-up v. top-down innovation cycles — cf Curtis Carlson

* Design future software ecosystems to benefit from variability and uncertainty rather than trying to
engineer it out (as shielding these systems from the random may actually cause harm)

— For example, designin degeneracy --i.e., “ability of structurally different elements of a system to perform the same
function”. In other words, design in partial functional overlap of elements capable of non-rigid, flexible and versatile
functionality. This allows for evolution *plus* redundancy. Contrast m:n redundancy (i.e., we do just the opposite).

1 No pun intended

Q&A

Thanks!

