Introduction to IPv6

Philip Smith <philip@apnic.net> APRICOT 2013 Singapore 19th Feb – 1st March 2013

Presentation Slides

Will be available on

- http://thyme.apnic.net/ftp/seminars/ APRICOT2013-IPv6-Introduction.pdf
- And on the APRICOT2013 website

Feel free to ask questions any time

Agenda

Background
Protocols & Standards
Addressing
Routing Protocols
Integration & Transition

Early Internet History

Late 1980s

- Exponential growth of the Internet
- Late 1990: CLNS proposed as IP replacement
- 1991-1992
 - Running out of "class-B" network numbers
 - Explosive growth of the "default-free" routing table
 - Eventual exhaustion of 32-bit address space
- Two efforts short-term vs. long-term
 - More at "The Long and Windy ROAD" http://rms46.vlsm.org/1/42.html

Early Internet History

- CIDR and Supernetting proposed in 1992-3
 - Deployment started in 1994
- □ IETF "ipng" solicitation RFC1550, Dec 1993
- Proliferation of proposals:
 - TUBA RFC1347, June 1992
 - PIP RFC1621, RFC1622, May 1994
 - CATNIP RFC1707, October 1994
 - SIPP RFC1710, October 1994
 - NIMROD RFC1753, December 1994
 - ENCAPS RFC1955, June 1996
- Direction and technical criteria for ipng choice RFC1719 and RFC1726, Dec 1994

Early Internet History → 1996

RFC1883 published in December 1995

- IPv6 Specification
- Other activities included:
 - Development of NAT, PPP, DHCP,...
 - Some IPv4 address reclamation
 - The RIR system was introduced
- $\square \rightarrow$ Brakes were put on IPv4 address consumption
- IPv4 32 bit address = 4 billion hosts
 - HD Ratio (RFC3194) realistically limits IPv4 to 250 million hosts

Recent Internet History The "boom" years → 2001

IPv6 Development in full swing

- Rapid IPv4 consumption
- IPv6 specifications sorted out
- (Many) Transition mechanisms developed
- 6bone
 - Experimental IPv6 backbone sitting on top of Internet
 - Participants from over 100 countries
- Early adopters
 - Japan, Germany, France, UK,...

Recent Internet History The "bust" years: 2001 → 2004

The DotCom "crash"

- i.e. Internet became mainstream
- □ IPv4:
 - Consumption slowed
 - Address space pressure "reduced"
- Indifference
 - Early adopters surging onwards
 - Sceptics more sceptical
 - Yet more transition mechanisms developed

2004 → 2011

Resurgence in demand for IPv4 address space

- All IPv4 address space was allocated by IANA by 3rd February 2011
- Exhaustion predictions did range from wild to conservative
- ...but by early 2011 IANA had no more!
- ...and what about the market for address space?
- Market for IPv4 addresses:
 - Creates barrier to entry
 - Condemns the less affluent to tyranny of NATs
- IPv6 offers vast address space
 - The only compelling reason for IPv6

Current Situation

- General perception is that "IPv6 has not yet taken hold"
 - IPv4 Address run-out has now made it into "headline news"

More discussions and run-out plans proposed

 Private sector still demanding a business case to "migrate"

No easy Return on Investment (RoI) computation

But reality is very different from perception!

- Something needs to be done to sustain the Internet growth
- IPv6 or NAT or both or something else?

Do we really need a larger address space?

Internet population

- ~630 million users end of 2002 10% of world pop.
- ~1320 million users end of 2007 20% of world pop.
- Doubles every 5 years (approximately)
- Future? (World pop. ~9B in 2050)
- US uses 92 /8s this is 6.4 IPv4 addresses per person
 - Repeat this the world over...
 - 6 billion population could require 26 billion IPv4 addresses
 - (7 times larger than the IPv4 address pool)

Do we really need a larger address space?

RFC 1918 is not sufficient for large environments

- Cable Operators (e.g. Comcast NANOG37 presentation)
- Mobile providers (fixed/mobile convergence)
- Large enterprises
- The Policy Development process of the RIRs turned down a request to increase private address space
 - RIR community guideline is to use global addresses instead
 - This leads to an accelerated depletion of the global address space
- Some wanted 240/4 as new private address space
 - But how to back fit onto all TCP/IP stacks released since 1995?

OS, Services, Applications, Content

Operating Systems

- MacOS X, Linux, BSD Family, many SYS V
- Windows: XP SP2 (hidden away), Vista, 7
- All use IPv6 first if available
 - (MacOS 10.7 has "happy eyeballs")
- Applications
 - Browsers, E-mail clients, IM, bittorrent,...
- Services
 - DNS, Apache WebServer, E-mail gateways,...
- Content Availability
 - Needs to be on IPv4 and on IPv6

Status in Internet Operational Community

- Service Providers get an IPv6 prefix from their regional Internet Registries
 - Very straight forward process when compared with IPv4
- Much discussion amongst operators about transition:
 - NOG experiments of 2008
 - http://www.civil-tongue.net/6and4/
 - What is really still missing from IPv6
 - http://www.nanog.org/mtg-0710/presentations/Bush-v6op-reality.pdf
 - Many presentations on IPv6 deployment experiences

Service Provider Status

- Many transit ISPs have "quietly" made their backbones IPv6 capable as part of infrastructure upgrades
 - Native is common (dual stack)
 - Providers using MPLS use 6PE/6VPE
 - Tunnels still used (unfortunately)
- Today finding IPv6 transit is not as challenging as it was 5 years ago

Why not use Network Address Translation?

- Private address space and Network address translation (NAT) could be used instead of IPv6
- But NAT has many serious issues:
 - Breaks the end-to-end model of IP
 - Breaks end-to-end network security
 - Serious consequences for Lawful Intercept
 - Non-NAT friendly applications means NAT has to be upgraded
 - Some applications don't work through NATs
 - Layered NAT devices
 - Mandates that the network keeps the state of the connections
 - How to scale NAT performance for large networks??
 - Makes fast rerouting and multihoming difficult
 - How to offer content from behind a NAT?

Conclusion

There is a need for a larger address space

- IPv6 offers this will eventually replace NAT
- But NAT will be around for a while too
- Market for IPv4 addresses looming also

Many challenges ahead

Agenda

Background
Protocols & Standards
Addressing
Routing Protocols
Integration & Transition

So what has really changed?

Expanded address space

- Address length quadrupled to 16 bytes
- Header Format Simplification
 - Fixed length, optional headers are daisy-chained
 - IPv6 header is twice as long (40 bytes) as IPv4 header without options (20 bytes)
- No checksum at the IP network layer
- No hop-by-hop segmentation
 - Path MTU discovery
- 64 bits aligned
- Authentication and Privacy Capabilities
 - IPsec is mandated
- No more broadcast

IPv4 and IPv6 Header Comparison

IPv4 Header

IPv6 Header

Version	IHL	Type of Service	Total Length		Version	Traffic Class	Flow Label		
Identification		Flags	Fragment Offset	Рау	load Length	Next Header	Hop Limit		
Source Address Destination Address						Source Address			
OptionsPaddingPodongField's name kept from IPv4 to IPv6Fields not kept in IPv6Name and position changed in IPv6New field in IPv6					Destination Address				

□ IPv4

- 32 bits
- = 4,294,967,296 possible addressable devices

□ IPv6

- 128 bits: 4 times the size in bits
- = 3.4×10^{38} possible addressable devices
- = 340,282,366,920,938,463,463,374,607,431,768,211,456
- ~ 5 x 10^{28} addresses per person on the planet

How was the IPv6 Address Size Chosen?

Some wanted fixed-length, 64-bit addresses

- Easily good for 10¹² sites, 10¹⁵ nodes, at .0001 allocation efficiency
 - (3 orders of magnitude more than IPv6 requirement)
- Minimizes growth of per-packet header overhead
- Efficient for software processing
- Some wanted variable-length, up to 160 bits
 - Compatible with OSI NSAP addressing plans
 - Big enough for auto-configuration using IEEE 802 addresses
 - Could start with addresses shorter than 64 bits & grow later
- Settled on fixed-length, 128-bit addresses

IPv6 Address Representation (1)

- 16 bit fields in case insensitive colon hexadecimal representation
 - 2031:0000:130F:0000:0000:09C0:876A:130B
- Leading zeros in a field are optional:
 - 2031:0:130F:0:0:9C0:876A:130B
- Successive fields of 0 represented as ::, but only once in an address:

2031::130F::9C0:876A:130B is NOT ok

■ 0:0:0:0:0:0:0:1 → ::1

0:0:0:0:0:0:0:0 → ::

- (loopback address)
 - (unspecified address)

IPv6 Address Representation (2)

□:: representation

- RFC5952 recommends that the rightmost set of :0: be replaced with :: for consistency
 - 2001:db8:0:2f::5 rather than 2001:db8::2f:0:0:0:5
- IPv4-compatible (not used any more)
 - 0:0:0:0:0:0:192.168.30.1
 - = ::192.168.30.1
 - = ::COA8:1E01

□ In a URL, it is enclosed in brackets (RFC3986)

- http://[2001:db8:4f3a::206:ae14]:8080/index.html
- Cumbersome for users, mostly for diagnostic purposes
- Use fully qualified domain names (FQDN)
- \Rightarrow The DNS has to work!!

IPv6 Address Representation (3)

Prefix Representation

- Representation of prefix is just like IPv4 CIDR
- In this representation you attach the prefix length
- Like IPv4 address:

198.10.0.0/16

IPv6 address is represented in the same way:
 2001:db8:12::/40

IPv6 Addressing

- IPv6 Addressing rules are covered by multiple RFCs
 - Architecture defined by RFC 4291
- Address Types are :
 - Unicast : One to One (Global, Unique Local, Link local)
 - Anycast : One to Nearest (Allocated from Unicast)
 - Multicast : One to Many
- A single interface may be assigned multiple IPv6 addresses of any type (unicast, anycast, multicast)
 - No Broadcast Address → Use Multicast

IPv6 Addressing

Туре	Binary	Нех
Unspecified	0000	::/128
Loopback	0001	::1/128
Global Unicast Address	0010	2000::/3
Link Local Unicast Address	1111 1110 10	FE80::/10
Unique Local Unicast Address	1111 1100 1111 1101	FC00::/7
Multicast Address	1111 1111	FF00::/8

IPv6 Address Allocation

The allocation process is:

- The IANA is allocating out of 2000::/3 for initial IPv6 unicast use
- Each registry gets a /12 prefix from the IANA
- Registry allocates a /32 prefix (or larger) to an IPv6 ISP
- Policy is that an ISP allocates a /48 prefix to each end customer

IPv6 Addressing Scope

■ 64 bits reserved for the interface ID

- Possibility of 2⁶⁴ hosts on one network LAN
- In theory 18,446,744,073,709,551,616 hosts
- Arrangement to accommodate MAC addresses within the IPv6 address
- 16 bits reserved for the end site
 - Possibility of 2¹⁶ networks at each end-site
 - 65536 subnets equivalent to a /12 in IPv4 (assuming a /28 or 16 hosts per IPv4 subnet)

IPv6 Addressing Scope

16 bits reserved for each service provider

- Possibility of 2¹⁶ end-sites per service provider
- 65536 possible customers: equivalent to each service provider receiving a /8 in IPv4 (assuming a /24 address block per customer)

■ 29 bits reserved for all service providers

- Possibility of 2²⁹ service providers
- i.e. 536,870,912 discrete service provider networks
 - Although some service providers already are justifying more than a /32

- Larger address space enables aggregation of prefixes announced in the global routing table
- Idea was to allow efficient and scalable routing
- But current Internet multihoming solution breaks this model

Interface IDs

Lowest order 64-bit field of unicast address may be assigned in several different ways:

- Auto-configured from a 64-bit EUI-64, or expanded from a 48-bit MAC address (e.g., Ethernet address)
- Auto-generated pseudo-random number (to address privacy concerns)
- Assigned via DHCP
- Manually configured

EUI-64

- EUI-64 address is formed by inserting FFFE between the company-id and the manufacturer extension, and setting the "u" bit to indicate scope
 - Global scope: for IEEE 48-bit MAC
 - Local scope: when no IEEE 48-bit MAC is available (eg serials, tunnels)

33

IPv6 Address Privacy (RFC 4941)

/12 /32 /48 /64

0db8

2001

Interface ID

- Temporary addresses for IPv6 host client application, e.g.
 Web browser
- Intended to inhibit device/user tracking but is also a potential issue
 - More difficult to scan all IP addresses on a subnet
 - But port scan is identical when an address is known
- Random 64 bit interface ID, run DAD before using it
- Rate of change based on local policy
- Implemented on Microsoft Windows XP/Vista/7 and Apple MacOS 10.7 onwards
 - Can be activated on FreeBSD/Linux with a system call

Host IPv6 Addressing Options

□ Stateless (RFC4862)

- SLAAC Stateless Address AutoConfiguration
- Booting node sends a "router solicitation" to request "router advertisement" to get information to configure its interface
- Booting node configures its own Link-Local address

Stateful

- DHCPv6 required by most enterprises
- Manual like IPv4 pre-DHCP
 - Useful for servers and router infrastructure
 - Doesn't scale for typical end user devices

IPv6 Renumbering

Renumbering Hosts

- Stateless:
 - Hosts renumbering is done by modifying the RA to announce the old prefix with a short lifetime and the new prefix
- Stateful:

DHCPv6 uses same process as DHCPv4

Renumbering Routers

- Router renumbering protocol was developed (RFC 2894) to allow domain-interior routers to learn of prefix introduction / withdrawal
- No known implementation!

Renumbering

Mac address: ______ 00:2c:04:00:FE:56

Host auto-configured address is:

NEW prefix received + SAME link-layer address

Sends *NEW* network-type information (prefix, default route, ...)

Router sends router advertisement (RA)

- This includes the new prefix and default route (and remaining lifetime of the old address)
- PC configures a new IPv6 address by concatenating prefix received with its EUI-64 address
 - Attaches lifetime to old address

Unique-Local

Unique-Local Addresses Used For:

- Local communications & inter-site VPNs
- Local devices such as printers, telephones, etc
- Site Network Management systems connectivity
- Not routable on the Internet
- Reinvention of the deprecated site-local?

Link-Local

Link-Local Addresses Used For:

- Communication between two IPv6 device (like ARP but at Layer 3)
- Next-Hop calculation in Routing Protocols
- Automatically assigned by Router as soon as IPv6 is enabled
 - Mandatory Address
- Only Link Specific scope
- Remaining 54 bits could be Zero or any manual configured₄₀ value

Multicast use

Broadcasts in IPv4

- Interrupts all devices on the LAN even if the intent of the request was for a subset
- Can completely swamp the network ("broadcast storm")
- Broadcasts in IPv6
 - Are not used and replaced by multicast
- Multicast
 - Enables the efficient use of the network
 - Multicast address range is much larger

IPv6 Multicast Address

IP multicast address has a prefix FF00::/8
 The second octet defines the lifetime and scope of the multicast address.

IPv6 Multicast Address Examples

RIPng

 The multicast address AllRIPRouters is FF02::9
 Note that 02 means that this is a permanent address and has link scope

OSPFv3

- The multicast address AllSPFRouters is FF02::5
- The multicast address AllDRouters is FF02::6

EIGRP

The multicast address AllEIGRPRouters is FF02::A

IPv6 Anycast

- An IPv6 anycast address is an identifier for a set of interfaces (typically belonging to different nodes)
 - A packet sent to an anycast address is delivered to one of the interfaces identified by that address (the "nearest" one, according to the routing protocol's measure of distance).
 - RFC4291 describes IPv6 Anycast in more detail
- In reality there is no known implementation of IPv6 Anycast as per the RFC
 - Most operators have chosen to use IPv4 style anycast instead

Anycast on the Internet

- A global unicast address is assigned to all nodes which need to respond to a service being offered
 - This address is routed as part of its parent address block
- The responding node is the one which is closest to the requesting node according to the routing protocol
 - Each anycast node looks identical to the other
- Applicable within an ASN, or globally across the Internet
- □ Typical (IPv4) examples today include:
 - Root DNS and ccTLD/gTLD nameservers
 - SMTP relays and DNS resolvers within ISP autonomous systems

MTU Issues

- Minimum link MTU for IPv6 is 1280 octets (versus 68 octets for IPv4)
 - ⇒ on links with MTU < 1280, link-specific fragmentation and reassembly must be used
- Implementations are expected to perform path MTU discovery to send packets bigger than 1280
- Minimal implementation can omit PMTU discovery as long as all packets kept ≤ 1280 octets
- A Hop-by-Hop Option supports transmission of "jumbograms" with up to 2³² octets of payload

IPv6 Neighbour Discovery

- Protocol defines mechanisms for the following problems:
 - Router discovery
 - Prefix discovery
 - Parameter discovery
 - Address autoconfiguration
 - Address resolution
 - Next-hop determination
 - Neighbour unreachability detection
 - Duplicate address detection
 - Redirects

IPv6 and DNS

Hostname to IP address:

IPv6 and DNS

Hostname to IP address:

IPv6 Technology Scope

IP Service	IPv4 Solution	IPv6 Solution
Addressing Range	32-bit, Network Address Translation	128-bit, Multiple Scopes
Autoconfiguration	DHCP	Serverless, Reconfiguration, DHCP
Security	IPSec	IPSec Mandated, works End-to-End
Mobility	Mobile IP	Mobile IP with Direct Routing
Quality-of- Service	Differentiated Service, Integrated Service	Differentiated Service, Integrated Service
IP Multicast	IGMP/PIM/Multicast BGP	MLD/PIM/Multicast BGP, Scope Identifier

What does IPv6 do for:

Security

- Nothing IPv4 doesn't do IPSec runs in both
- But IPv6 mandates IPSec
- QoS

Nothing IPv4 doesn't do –
 Differentiated and Integrated Services run in both
 So far, Flow label has no real use

IPv6 Status – Standardisation

Several key components on standards track... Specification (RFC2460) Neighbour Discovery (RFC4861) ICMPv6 (RFC4443) IPv6 Addresses (RFC4291 & 3587) RIP (RFC2080) **BGP** (**RFC2545**) IGMPv6 (RFC2710) **OSPF** (RFC5340) Router Alert (RFC2711) Jumbograms (RFC2675) Autoconfiguration (RFC4862) Radius (RFC3162) DHCPv6 (RFC3315 & 4361) Flow Label (RFC6436/7/8) IPv6 Mobility (RFC3775) Mobile IPv6 MIB (RFC4295) Unique Local IPv6 Addresses (RFC4193) GRE Tunnelling (RFC2473) DAD for IPv6 (RFC4429) Teredo (RFC4380) ISIS for IPv6 (RFC5308) **VRRP** (RFC5798) IPv6 available over: PPP (RFC5072) Ethernet (RFC2464) FDDI (RFC2467) Token Ring (RFC2470) NBMA (RFC2491) ATM (RFC2492) Frame Relay (RFC2590) ARCnet (RFC2497) IEEE1394 (RFC3146) FibreChannel (RFC4338) Facebook (RFC5514)

52

Agenda

Background
Protocols & Standards
Addressing
Routing Protocols
Integration & Transition

Getting IPv6 address space (1)

From your Regional Internet Registry

- Become a member of your Regional Internet Registry and get your own allocation
 Membership usually open to all network operators
- General allocation policies are outlined in RFC2050
 - RIR specific details for IPv6 allocations are listed on the individual RIR website
- Open to all organisations who are operating a network
- Receive a /32 (or larger if you will have more than 65k /48 assignments)

Getting IPv6 address space (2)

From your upstream ISP

- Receive a /48 from upstream ISP's IPv6 address block
- Receive more than one /48 if you have more than 65k subnets

■ If you need to multihome:

- Apply for a /48 assignment from your RIR
- Multihoming with provider's /48 will be operationally challenging
 - Provider policies, filters, etc

Using 6to4 for IPv6 address space

Some entities still use 6to4

- Not recommended due to operational problems
- Read http://datatracker.ietf.org/doc/draft-ietfv6ops-6to4-to-historic for some of the reasoning why
- FYI: 6to4 operation:
 - Take a single public IPv4 /32 address
 - 2002:<ipv4 /32 address>::/48 becomes your IPv6 address block, giving 65k subnets
 - Requires a 6to4 gateway
 - 6to4 is a means of connecting IPv6 islands across the IPv4 Internet

Addressing Plans – Infrastructure

- All Network Operators should obtain a /32 from their RIR
- Address block for router loop-back interfaces
 - Number all loopbacks out of one /64
 - /128 per loopback
- Address block for infrastructure (backbone)
 - /48 allows 65k subnets
 - /48 per region (for the largest multi-national networks)
 - /48 for whole backbone (for the majority of networks)
 - Infrastructure/backbone usually does NOT require regional/geographical addressing
 - Summarise between sites if it makes sense

Addressing Plans – Infrastructure

What about LANs?

/64 per LAN

What about Point-to-Point links?

- Protocol design expectation is that /64 is used
- /127 now recommended/standardised
 - http://www.rfc-editor.org/rfc/rfc6164.txt
 - (reserve /64 for the link, but address it as a /127)
- Other options:
 - /126s are being used (mimics IPv4 /30)
 - /112s are being used
 - Leaves final 16 bits free for node IDs
 - Some discussion about /80s, /96s and /120s too

Addressing Plans – Customer

Customers get one /48

 Unless they have more than 65k subnets in which case they get a second /48 (and so on)

In typical deployments today:

- Several ISPs are giving small customers a /56 and single LAN end-sites a /64, e.g.:
 - /64 if end-site will only ever be a LAN
 - /56 for small end-sites (e.g. home/office/small business)
 - /48 for large end-sites
- This is another very active discussion area
- Observations:
 - Don't assume that a mobile endsite needs only a /64
 - Some operators are distributing /60s to their smallest customers!!

Addressing Plans – Advice

Customer address assignments should not be reserved or assigned on a per PoP basis

- Follow same principle as for IPv4
- Subnet aggregate to cater for multihoming needs
- Consider regional delegation
- ISP iBGP carries customer nets
- Aggregation within the iBGP not required and usually not desirable
- Aggregation in eBGP is very necessary
- Backbone infrastructure assignments:
 - Number out of a single /48
 - Operational simplicity and security
 - Aggregate to minimise size of the IGP

Addressing Plans – Scheme

Looking at Infrastructure:

2001:db8::/32

•			,		
/64	2001:db8:0:	::/48	/60	2001:db8:1::/48 to 2001:db8:ffff::/48	
Loopbacks	Backbone Pt	P & LANs	NOC	Customers	
Alternative:					
2001:db8::/32					
/64 20)01:db8:0::/48	/60 2001	:db8:1::/48	2001:db8:2::/48 to 2001:db8:ffff::/48	
Loopbacks	Backbone PtP & LANs	NOC Cu	stomer PtP	Customers	

Addressing Plans Planning

- Registries will usually allocate the next block to be contiguous with the first allocation
 - (RIRs use a sparse allocation strategy industry goal is aggregation)
 - Minimum allocation is /32
 - Very likely that subsequent allocation will make this up to a /31 or larger (/28)
 - So plan accordingly

Addressing Tools

Examples of IP address planning tools:

- NetDot netdot.uoregon.edu (recommended!!)
- HaCi sourceforge.net/projects/haci
- IPAT nethead.de/index.php/ipat
- freeipdb home.globalcrossing.net/~freeipdb/
- Examples of IPv6 subnet calculators:
 - ipv6gen code.google.com/p/ipv6gen/
 - sipcalc www.routemeister.net/projects/sipcalc/

Agenda

Background
Protocols & Standards
Addressing
Routing Protocols
Integration & Transition

Static Routing in IPv6

Unchanged from IPv4

- Default route is now ::/0
- On most platforms, the CLI is very similar

□ Cisco IOS Static Routing Example:

ipv6 route 2001:db8::/64 2001:db8:0:CC::1 110

Routes packets for network 2001:db8::/64 to a networking device at 2001:db8:0:CC::1 with an administrative distance of 110

Dynamic Routing Protocols in IPv6

Dynamic Routing in IPv6 is unchanged from IPv4:

- IPv6 has 2 types of routing protocols: IGP and EGP
- IPv6 still uses the longest-prefix match routing algorithm

IGP

- RIPng (RFC 2080)
- Cisco EIGRP for IPv6
- OSPFv3 (RFC 5340)
- Integrated IS-ISv6 (RFC 5308)
- EGP
 - MP-BGP4 (RFC 4760 and RFC 2545)

Configuring Routing Protocols

Dynamic routing protocols require router-id

- Router-id is a 32 bit integer
- IOS auto-generates these from loopback interface address if configured, else highest IPv4 address on the router
- Most ISPs will deploy IPv6 dual stack so router-id will be automatically created
- Early adopters choosing to deploy IPv6 in the total absence of any IPv4 addressing need to be aware:

Router-id needs to be manually configured:

```
ipv6 router ospf 100
```

router-id 10.1.1.4

RIPng

For the ISP industry, simply don't go here

- ISPs do not use RIP in any form unless there is absolutely no alternative
 - And there usually is
- RIPng was used in the early days of the IPv6 test network
 - Sensible routing protocols such as OSPF and BGP rapidly replaced RIPng when they became available

OSPFv3 overview

OSPFv3 is OSPF for IPv6 (RFC 5340)
 Based on OSPFv2, with enhancements
 Distributes IPv6 prefixes
 Runs directly over IPv6
 Completely independent of OSPFv2

Differences from OSPFv2

Runs over a link, not a subnet

- Multiple instances per link
- Topology not IPv6 specific
 - Router ID
 - Link ID
- Standard authentication mechanisms
- Uses link local addresses
- Generalized flooding scope
- Two new LSA types

ISIS Standards History

- ISO 10589 specifies the OSI IS-IS routing protocol for CLNS traffic
- RFC 1195 added IPv4 support
 - Also known as Integrated IS-IS (I/IS-IS)
 - I/IS-IS runs on top of the Data Link Layer
- RFC5308 adds IPv6 address family support
- RFC5120 defines Multi-Topology concept
 - Permits IPv4 and IPv6 topologies which are not identical
 - Permits roll out of IPv6 without impacting IPv4 operations

IS-IS for IPv6

2 TLVs added to introduce IPv6 routing

- IPv6 Reachability TLV (0xEC)
- IPv6 Interface Address TLV (0xE8)
- 4 TLVs added to support multi-topology ISIS
 - Multi Topology
 - Multi Topology Intermediate Systems
 - Multi Topology Reachable IPv4 Prefixes
 - Multi Topology Reachable IPv6 Prefixes
- Multi Topology IDs
 - #0 standard topology for IPv4/CLNS
 - #2 topology for IPv6
Multi-Protocol BGP for IPv6 – RFC2545

IPv6 specific extensions

- Scoped addresses: Next-hop contains a global IPv6 address and/or potentially a link-local address
- NEXT_HOP and NLRI are expressed as IPv6 addresses and prefix
- Address Family Information (AFI) = 2 (IPv6)

Sub-AFI = 1 (NLRI is used for unicast)

- Sub-AFI = 2 (NLRI is used for multicast RPF check)
- Sub-AFI = 3 (NLRI is used for both unicast and multicast RPF check)

Sub-AFI = 4 (label)

Agenda

Background
Protocols & Standards
Addressing
Routing Protocols
Integration & Transition

IPv4-IPv6 Co-existence/Transition

- A wide range of techniques have been identified and implemented, basically falling into three categories:
 - Dual-stack techniques, to allow IPv4 and IPv6 to coexist in the same devices and networks
 - Tunneling techniques, to avoid dependencies when upgrading hosts, routers, or regions
 - Translation techniques, to allow IPv6-only devices to communicate with IPv4-only devices
- All of these are being used, in combination

Dual Stack Approach

- Dual stack node means:
 - Both IPv4 and IPv6 stacks enabled
 - Applications can talk to both
 - Choice of the IP version is based on name lookup and application preference

Strategies available for Service Providers

- 1. Do nothing
 - Wait and see what competitors do
 - Business not growing, so don't care what happens
- 2. Extend life of IPv4
 - Force customers to NAT
 - Buy IPv4 address space on the marketplace
- 3. Deploy IPv6
 - Dual-stack infrastructure
 - IPv6 and NATed IPv4 for customers
 - 6rd (Rapid Deploy) with native or NATed IPv4 for customers
 - Or various other combinations of IPv6, IPv4 and NAT

1. Doing Nothing

Advantages

- Easiest and most cost effective short term strategy
- Disadvantages
 - Limited to IPv4 address availability (RIRs or marketplace)
 - No access to IPv6
 - Negative public perception of SP as a laggard
 - Strategy will have to be reconsidered once IPv4 address space is no longer available

2. Extending life of IPv4 Network

■ Two ways of extending IPv4 network

- Next step along from "Strategy One: Do nothing"
- Force customers to use NAT
 - Customers moved to RFC1918 address space
 - SP infrastructure moved to RFC6598 address space (or use RFC1918 where feasible)
- Acquire IPv4 address space from another organisation
 - IPv4 subnet trading

3. IPv4/IPv6 coexistence & transition

■ Three strategies for IPv6 transition:

- Dual Stack Network
 - The original strategy
 - Depends on sufficient IPv4 being available
- 6rd (Rapid Deploy)
 - Improvement on 6to4 for SP customer deployment
- Large Scale NAT (LSN)
 - SP deploys large NAT boxes to do address and/or protocol translation
 - Typically NAT444, Dual-Stack Lite and NAT64

Conclusions Potential Scenarios

- Most of the content and applications move to IPv6 only;
- Most of the content and applications are offered for IPv4 and IPv6;
- Most of the users move to IPv6 only
 - Especially mobile operators offering LTE handsets in emerging countries
- No change (the contents/applications stay IPv4 and absence of pro-IPv6 regulation), SP customer expectations devolve to double-NAT;
- No change (the contents/applications stay IPv4) but SP customer expectations do not devolve to double-NAT (or they are ready to pay for peer-to-peer connectivity).
 - Perhaps well established broadband markets like US or Europe

Conclusions Potential Techniques

Scenario	Potential Techniques
Content and Applications move to IPv6	IPv6 only network; Dual-Stack, 6rd and DS-lite as migration techniques
Content and Applications on IPv4 and IPv6	Dual-Stack (if enough IPv4) or 6rd; SP IPv4-NAT; DS-lite (for greenfield) *
Users are IPv6 only	Stateful/Stateless AFT to get to IPv4 content *
No change (double NAT)	SP IPv4-NAT *
No change (no double NAT)	Do nothing *

* Transfer Market applicable

Recommendations

- 1. Start deploying IPv6 as long term strategy
- 2. Evaluate current addressing usage to understand if IPv4 to IPv4 NAT is sufficient for transition period
- 3. Prepare a translation mechanism from the IPv4 Internet to the IPv6 Internet
- Educate your user base on IPv6 introduction, the use cases and troubleshooting