

APRICOT 2013 @ Singapore

The trend of IPv4 over IPv6 techniques, use cases and experience

Japan Internet Exchange Co., Ltd.

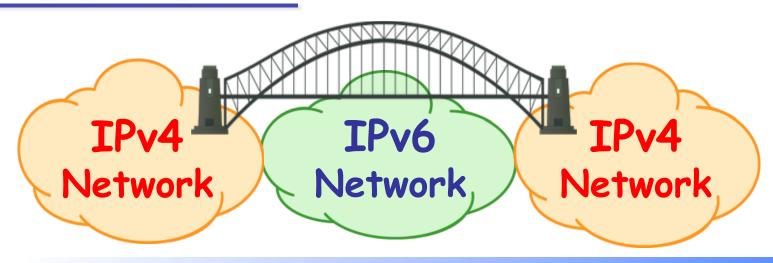
Masataka MAWATARI

<mawatari[at]jpix.ad.jp>

Agenda

- 1. Necessity of IPv4 over IPv6 technique
- 2. Trend of standardization
- 3. Comparison of IPv4 over IPv6 technique
- 4. Use cases in each technique
- 5. Trend of implementation
- **6. Experience in JPIX**

1. Necessity of IPv4 over IPv6 technique


- 2. Trend of standardization
- 3. Comparison of IPv4 over IPv6 technique
- 4. Use cases in each technique
- 5. Trend of implementation
- 6. Experience in JPIX

What's IPv4 over IPv6 technique?

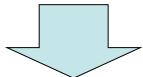
It can connect isolated IPv4 networks across an IPv6-only network.



Why is IPv4 over IPv6 needed?

- Lack of compatibility between protocols
 - IPv4-only nodes can't directly communicate with IPv6-only nodes.
- Expanding the IPv6 internet in a moment is impossible
 - IPv6 unsupported nodes will remain in the internet for long
 - Introducing IPv6 for the legacy access service is unreasonable from a financial viewpoint

Mechanism to work as a bridge between IPv4 and IPv6


is needed

Why is IPv4 over IPv6 needed?

- Lack of compatibility between protocols
 - IPv4-only nodes can't directly communicate with IPv6-only nodes.
- Expanding the IPv6 internet in a moment is impossible
 - IPv6 unsupported nodes will remain in the internet for long
 - Introducing IPv6 for the legacy access service is unreasonable from a financial viewpoint

IPv4 over IPv6 technique is needed

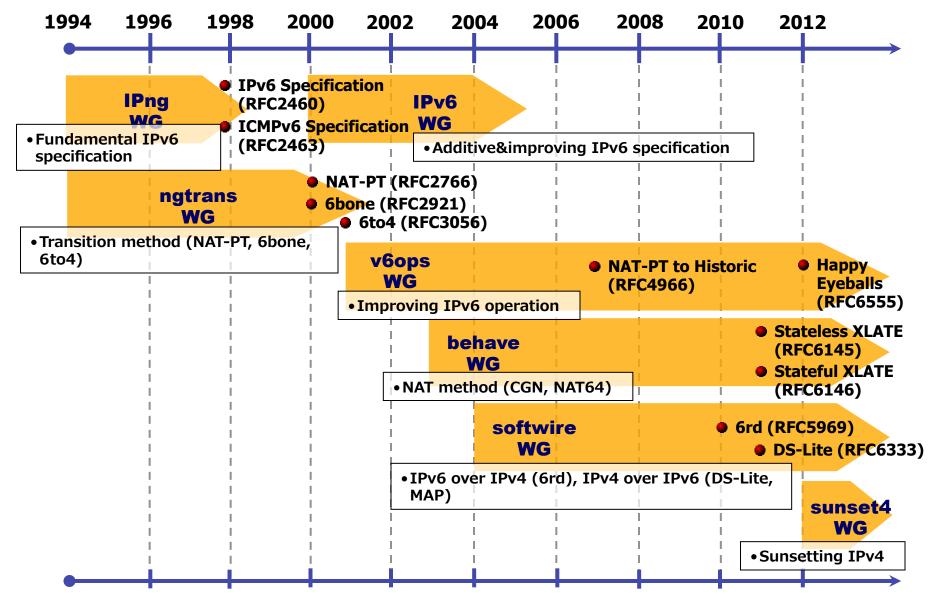
Advantages and disadvantages of IPv4 over IPv6

Advantages

- Resolution of the IPv4 address exhaustion
 - ISPs can solve it by sharing global IPv4 addresses
- Simple access network
 - ISPs can migrate their access network to simple IPv6only network
 - ISPs don't need to operate IPv4 access network

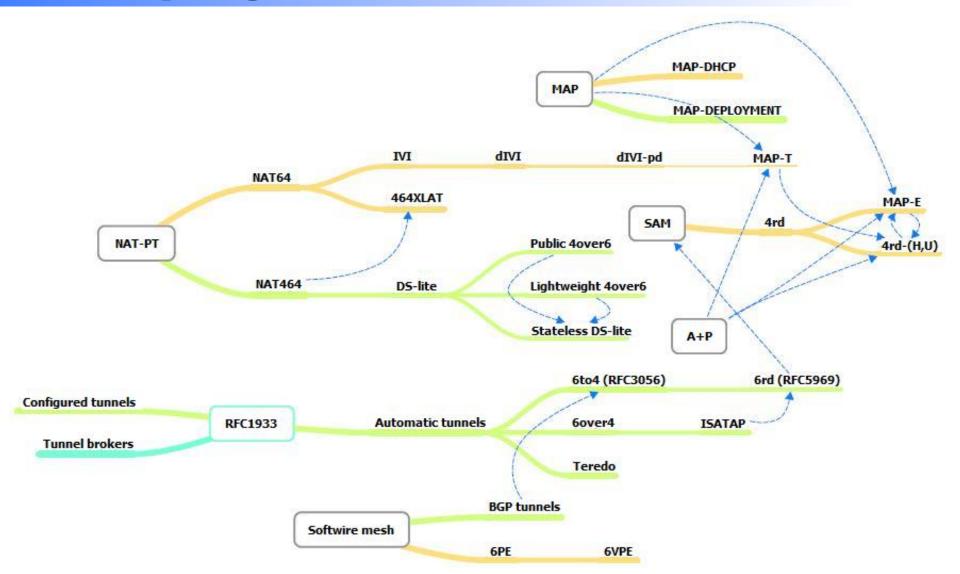
Disadvantage

- Initial cost
 - ISPs need to deploy the IPv4 over IPv6 equipments including CPEs. However, it will be commodity soon.

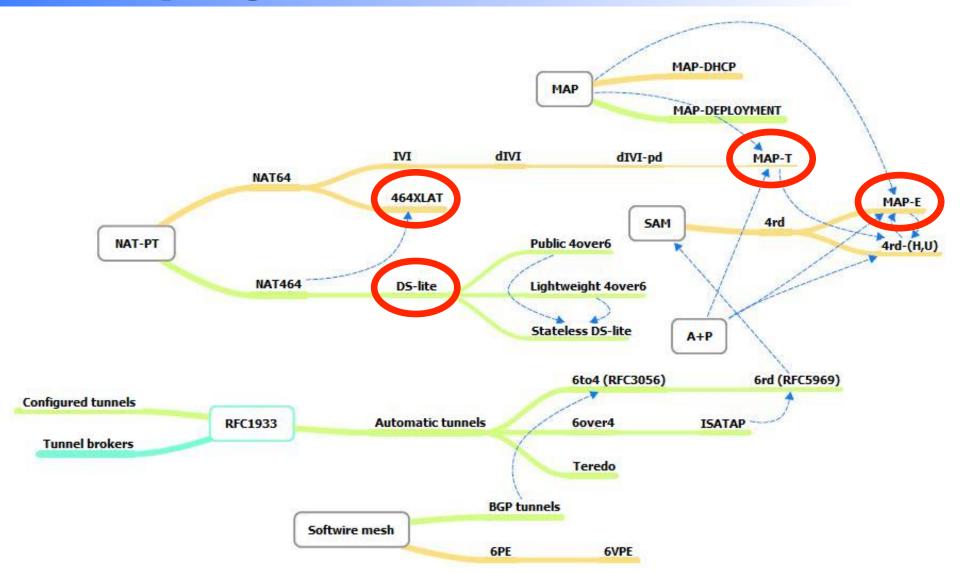


- 1. Necessity of IPv4 over IPv6 technique
- 2. Trend of standardization
- 3. Comparison of IPv4 over IPv6 technique
- 4. Use cases in each technique
- 5. Trend of implementation
- 6. Experience in JPIX

The history of IETF WG related to IPv6



The progress of IPv4 over IPv6



https://ripe65.ripe.net/presentations/91-townsley-map-ripe65-ams-sept-24-2012.pdf

The progress of IPv4 over IPv6

https://ripe65.ripe.net/presentations/91-townsley-map-ripe65-ams-sept-24-2012.pdf

Standardization status in IETF

- DS-Lite
 - Status
 - Publication was done as a RFC 6333 (Aug, 2011)
 - Document Category
 - Standards Track
- 464XLAT
 - Status
 - IETF Last Call was done
 - RFC editor queue currently in progress
 - Document Category
 - Informational
- MAP-E, MAP-T
 - Status
 - Rough consensus on separating into MAP-E draft and MAP-T draft at softwire WG in IETF 84
 - Until just before this, MAP-E and MAP-T was compiled in a draft.
 - Discussing further at softwire WG
 - Document Category
 - MAP-E: Standards Track
 - MAP-T : Experimental

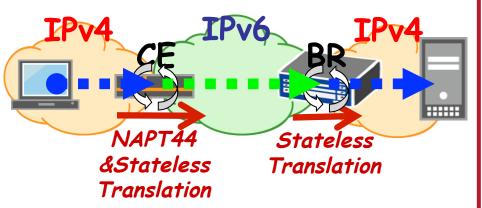
References to IPv4 over IPv6 solutions

- DS-Lite
 - http://tools.ietf.org/html/rfc6333
- 464XLAT
 - http://tools.ietf.org/html/draft-ietf-v6ops-464xlat
- MAP-E
 - http://tools.ietf.org/html/draft-ietf-softwire-map
- MAP-T
 - http://tools.ietf.org/html/draft-ietf-softwire-map-t

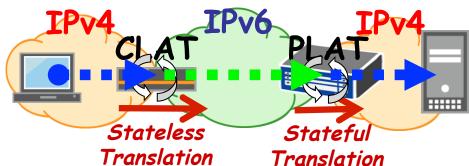
- 1. Necessity of IPv4 over IPv6 technique
- 2. Trend of standardization

3. Comparison of IPv4 over IPv6 technique

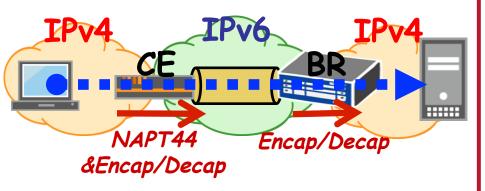
- 4. Use cases in each technique
- 5. Trend of implementation
- 6. Experience in JPIX



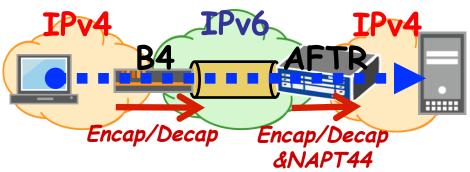
The survey of IPv4 over IPv6


MAP-T

Stateless IPv4 sharing Translation method


464XLAT

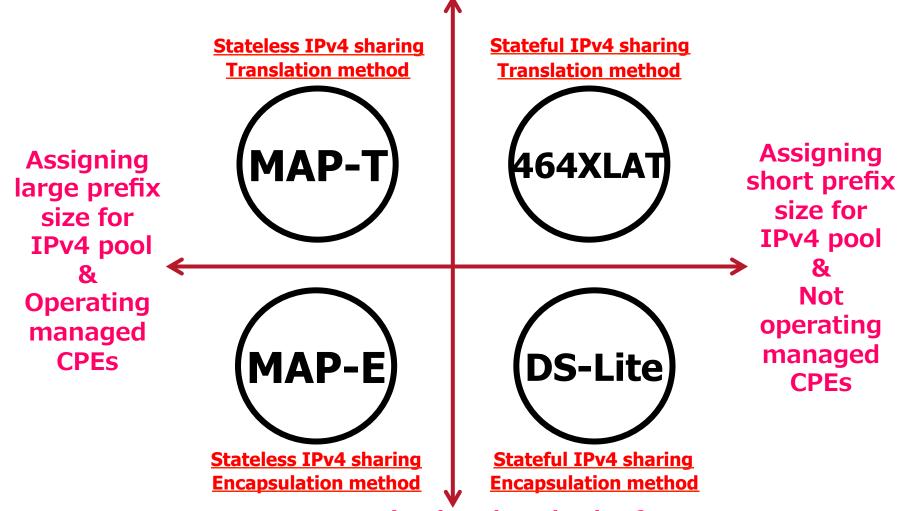
Stateful IPv4 sharing Translation method


MAP-E

Stateless IPv4 sharing Encapsulation method

DS-Lite

Stateful IPv4 sharing Encapsulation method



Appropriate situation for techniques

Separating organization between operating IPv6 access network and sharing global IPv4 addresses

One organization does both of operating IPv6 access network and sharing of global IPv4 addresses

Comparison between translation and encapsulation

Traffic engineering operation

- Translation
 - Figuring out IPv4 address from translated IPv6
 packet header is practicable in the IPv6-only network
- Encapsulation
 - ISPs need to install the DPI devices in the IPv6-only network, if needed
- Transparency of packet header
 - Translation
 - The lack of transparency to IPv4 packets due to IPv4/IPv6 translating
 - Encapsulation
 - little impact on the lack of IPv4 header information

Comparison between stateless and stateful

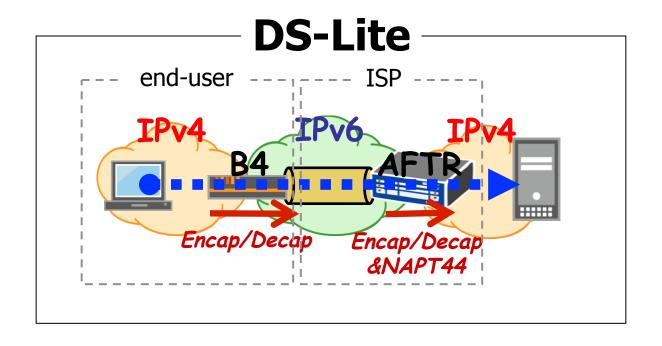
- Global IPv4 address utilization
 - Stateless
 - ISPs must drive the right compression ratio, so they have to get enough global IPv4 addresses
 - Stateful
 - ISPs can efficiently share limited IPv4 addresses
- Address mapping logging
 - Stateless
 - Logging facility is not needed
 - Stateful
 - Logging facility is needed

- 1. Necessity of IPv4 over IPv6 technique
- 2. Trend of standardization
- 3. Comparison of IPv4 over IPv6 technique
- 4. Use cases in each technique
- 5. Trend of implementation
- 6. Experience in JPIX

Use cases...

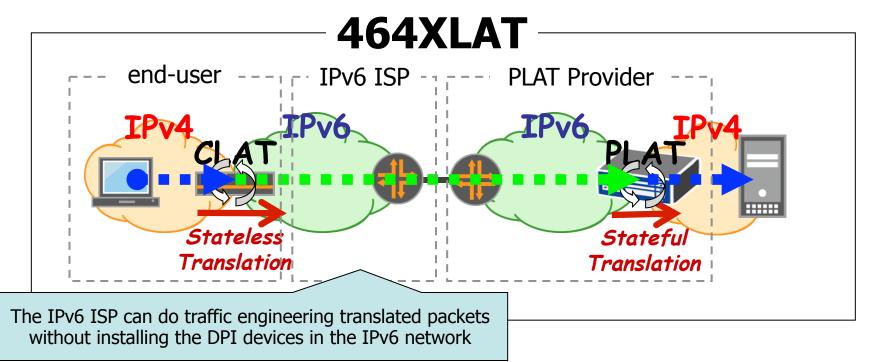
[Question]

-We found that we have some available solutions.
 What is the best solution for us?


[Answer]

-It depends on your situation.

Use cases of DS-Lite


- If the ISP hasn't enough global IPv4 addresses,
- If the ISP will operate both of IPv6 access network and global IPv4 address sharing,
- DS-Lite fits for that.

Use cases of 464XLAT

- If the ISP hasn't enough global IPv4 addresses,
- If the ISP will operate simple IPv6 access network only and another ISP will operate global IPv4 address sharing,
- If IPv6 ISP wants to monitor IPv4 address from translated IPv6 packet header in the IPv6 access network,
- 464XLAT fits for that.

Use cases of MAP-E and MAP-T

- If the ISP has sufficient global IPv4 addresses, and provision global IPv4 addresses for end-users,
- MAP-E and MAP-T fits for that.

- 1. Necessity of IPv4 over IPv6 technique
- 2. Trend of standardization
- 3. Comparison of IPv4 over IPv6 technique
- 4. Use cases in each technique
- 5. Trend of implementation
- 6. Experience in JPIX

DS-lite (AFTR) supported products

Cisco Systems
 Cisco CRS
 (IOS-XR 4.2.1 or later)
 Cisco ASR 9000 Series
 (IOS-XR 4.2.1 or later)

A10 Networks
 AX Series
 (ACOS 2.6.1 or later)

Juniper Networks
 MX/M/T Series
 (JUNOS 10.4 or later)

^{*} Please refer to release notes of the vendors

464XLAT (PLAT) supported products

Cisco Systems
 Cisco ASR 1000 Series
 (IOS-XE 3.4.0S or later)

A10 Networks
 AX Series
 (ACOS 2.6.4 or later)

Juniper Networks
 SRX Series
 (JUNOS 10.4 or later)
 M/MX Series
 (JUNOS 10.2 or later)

F5 Networks
 BIG-IP Series
 (OS 11.1 or later)

^{*} Please refer to release notes of the vendors

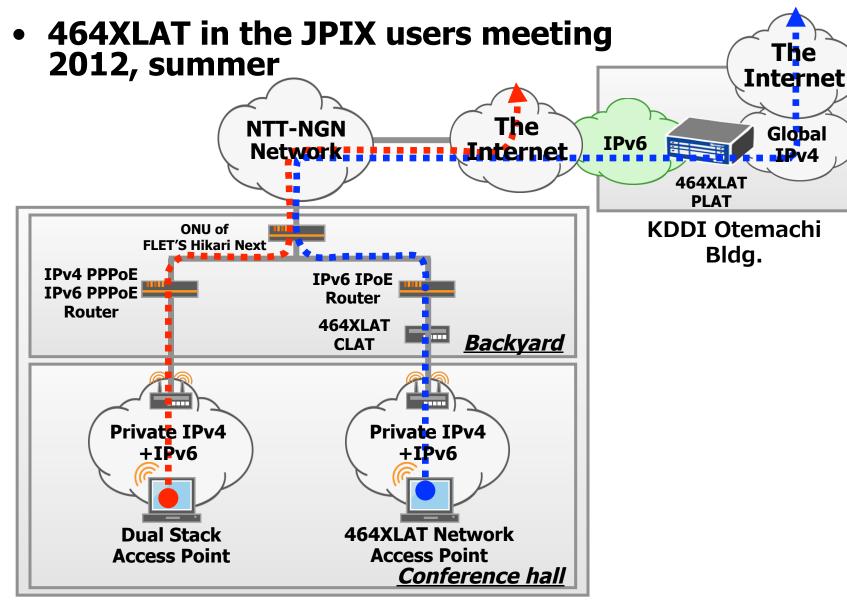
MAP-T (BR) supported products

Cisco Systems
 Cisco ASR 9000 Series
 (IOS-XR 4.3.0 or later)
 Cisco ASR 1000 Series
 (IOS-XE 3.8.0S or later)

* Please refer to release notes of the vendors

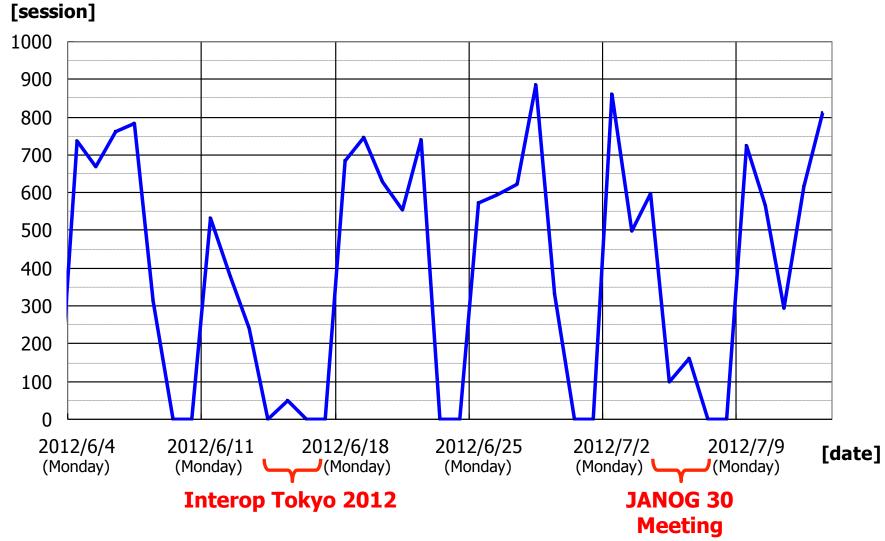
The other implementations

- DS-Lite
 - AFTR
 - ISC AFTR (OSS)
 - http://www.isc.org/software/aftr
 - **B4**
 - D-Link DIR-835, DIR-865L
 - http://files.dlink.com.au/Products/DIR-835/Manuals/DIR-835 A1 Manual v1.01(DI).pdf
 - http://files.dlink.com.au/Products/DIR-865L/Manuals/DIR-865L_A1_Manual_v1.00(DI).pdf
- 464XLAT
 - PLAT
 - Ecdysis NAT64 (OSS)
 - http://ecdysis.viagenie.ca/
 - linuxnat64 (OSS)
 - http://en.sourceforge.jp/projects/sfnet_linuxnat64/
 - OpenBSD PF (OSS)
 - http://www.openbsd.org/51.html
 - CLAT
 - Android-clat (OSS)
 - http://dan.drown.org/android/clat/
 - NEC AccessTechnica CL-AT1000P (Trial)
 - http://www.necat.co.jp/press/2010/pre 0721.html
- MAP-E, MAP-T
 - BR/CE
 - ASAMAP/Vyatta (OSS)
 - http://enog.jp/~masakazu/vyatta/map/
 - ASAMAP has compatibility functions with DS-Lite AFTR/B4 and 464XLAT PLAT/CLAT.
 - IIJ SEIL/X1 (Trial)
 - https://www.seil.jp/community/node/71



- 1. Necessity of IPv4 over IPv6 technique
- 2. Trend of standardization
- 3. Comparison of IPv4 over IPv6 technique
- 4. Use cases in each technique
- 5. Trend of implementation
- 6. Experience in JPIX

JPIX experiences (464XLAT trial)



JPIX experiences (464XLAT trial)

The Core of Internet Communit

Statistics of max session per 1 client

Conclusion

- The IPv4 over IPv6 technique...
 - -is a bridge technology between IPv4 network and IPv6 network
 - is a solution to reasonably extend
 IPv6 internet without major
 impacts
 - requires an eye for choosing the technique fits for your situation

Japan Internet Exchange Co., Ltd.

