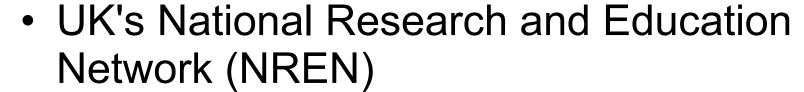


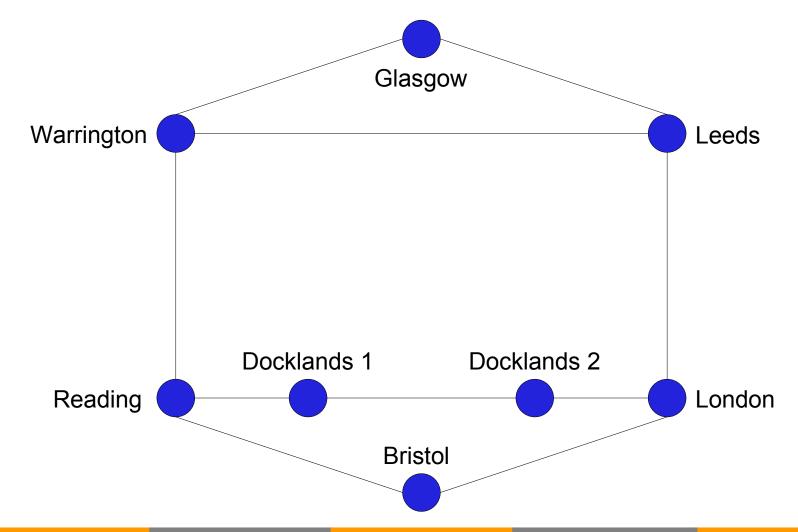
Upgrading to STM-256

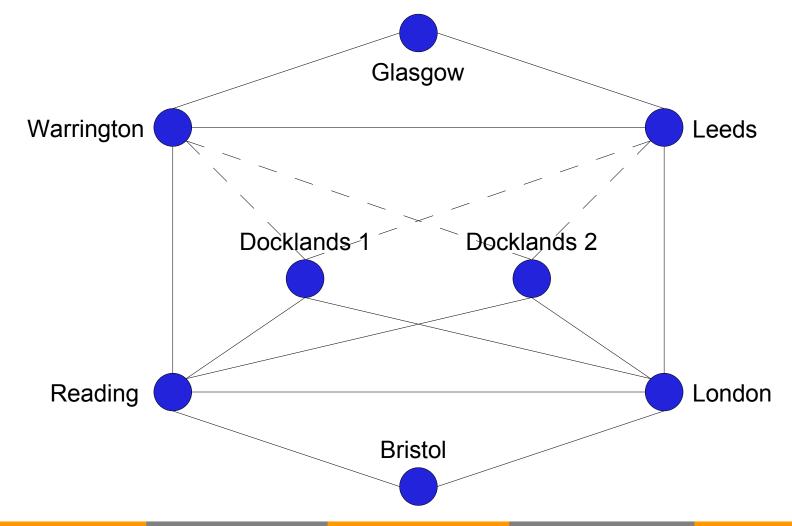

Rob Evans
JANET(UK)

- Connects educational establishments to each other, the Internet, and other R&E networks around the world
- Serves schools, colleges, universities and research facilities
- Potential userbase of 18 million

What is JANET?

- Sites connect to RNs
- RNs connect to backbone through two diverse fibre routes
- Two PoPs in London Docklands with most of the external connections (transit, peering)
- This talk concentrates on the backbone





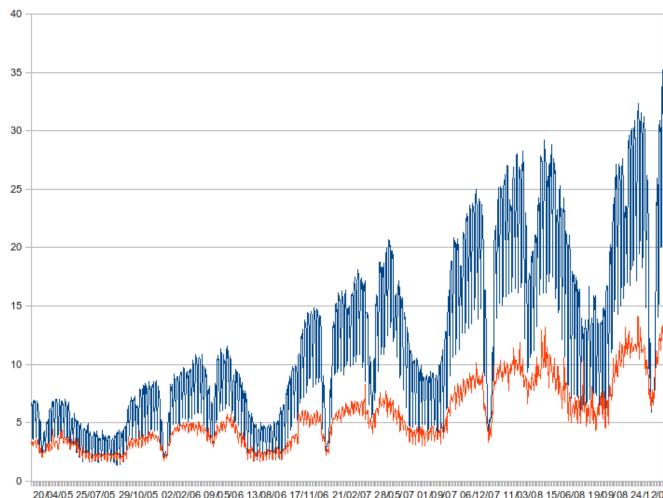
JANET (Circuits)

What is JANET?

- Dedicated optical equipment
 - Ciena CoreStream Regional & CN4200
- Dedicated fibre
- Optical layer managed by Verizon Business
 - We have read-only access to OnCentre
- Most circuits are SDH
 - We like alarms, diagnostics and error counters provided by SDH

What is JANET?

- Juniper T series routers
 - Quite a few Ciscos too
- IP layer managed in-house
 - IPv4/IPv6 dual stack, of course!
 - Started with a tunnel service in 1997
 - Native since 2003
 - Unicast and multicast.


Why increase speed?

External

03/03/05 07/06/05 11/09/05 16/12/05 22/03/06 26/06/06 30/09/06 04/01/07 10/04/07 15/07/07 19/10/07 23/01/08 28/04/08 02/08/08 06/11/08

What were the options?

- Trunk multiple links
- Faster circuits

Why choose STM-256?

- Client (router) side:
 - We like simplicity
 - Prefer one link to multiple
 - Some of the scientists generate large flows
 - May overload a particular link in a bundle

Why choose STM-256?

Line (optical) side:

- Don't want to squander wavelengths that researchers may need
- As an R&E network, we're expected to be on the 'leading edge.'
 - Within reasonable constraints
 - Whilst still keeping a stable network, of course.

Equipment specification

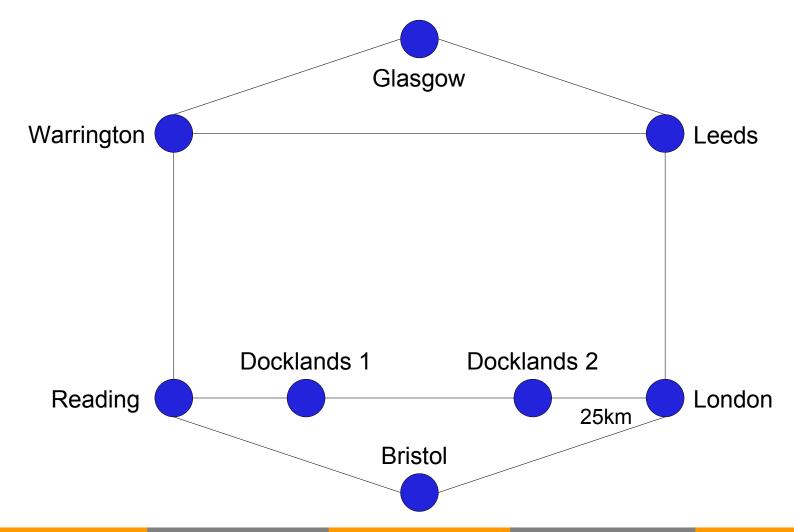
- Ciena cards made by Stratalight
- First generation card
 - PMD tolerance: 2.1ps DGD
 - Duobinary encoding
- Second generation card
 - PMD tolerance: 2.5ps DGD
 - 8ps with compensation
 - DPSK encoding

Fibre characteristics

		A to B	B to A
	Length (km)	DGD (ps)	DGD (ps)
London – Telehouse	25.10	1.44	0.47
London – Telecity	28.30	1.45	0.49
Reading – Telehouse	116.50	0.75	1.64
Reading – Telecity	113.30	0.74	1.64
London – Leeds	379.68	15.46	13.66
Reading – Warrington	322.85	10.01	11.52
Warrington – Leeds	107.00	0.15	1.31
London – Bristol	252.94	2.03	1.89
Bristol – Reading	150.00	1.10	0.84

Step 1: Trial

- Split into trial and two phases.
 - Trial: Telehouse to London



Trial

Trial: June 2007

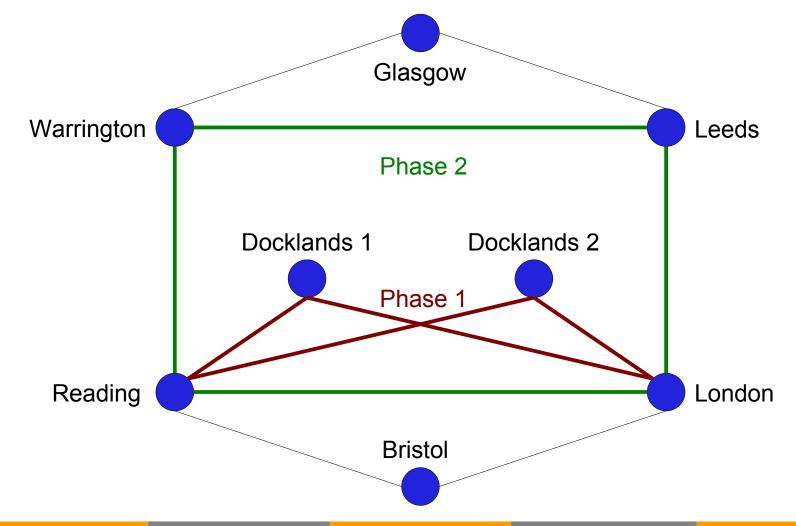
- Started with a separate fibre in same bundle as primary route (~25km)
- Ciena 1st generation cards
- Loaned Juniper interfaces
- Logistics more complicated than technology.

Trial

- One month later, wavelength multiplexed onto backbone fibre
- No problems.

Step 2: Production

- All could be done with the Ciena equipment
- Phase 2: London and Reading north to Leeds and Warrington
 - Needed to find an alternative solution



Production

Phase 1: June 2008

- Became available 1Q08
- Required software upgrades to existing Ciena shelves to work with new management software
 - Not always so smooth
- September 2008

Phase 2: Nov 2008

- Even with external dispersion compensation
- Alternative solution: Nortel
 - Uses Polarisation Multiplexing Differential Quadrature Phase Shift Keying (POLMUX-DQPSK)
- Carried as 'alien wavelength' on CoreStreams

POLMUX-QPSK

- Quadrature Phase Shift Keying
 - Allows transmission of 2 bits/symbol
 - ~1 bit/s/Hz of spectrum
- Polarisation Multiplexing
 - Two QPSK signals sent with orthogonal polarisations
 - ~2 bit/s/Hz of spectrum
- Plus fancy Forward Error Correction
 - 112Gbit/s within 50GHz ITU grid channels

Phase 2

Additional optical equipment at four core points of presence

- Expensive
 - "Not our problem," we'd had 40Gbit/s in our contract.
- New management systems
- New management procedures
- December 2008

Problems

- Backed off to 4-hour spares replacement
- ...only no card in stock
 - ...or in the country
 - ...or in the continent
- Had to be sourced from manufacturing
- Best part of two weeks

Problems

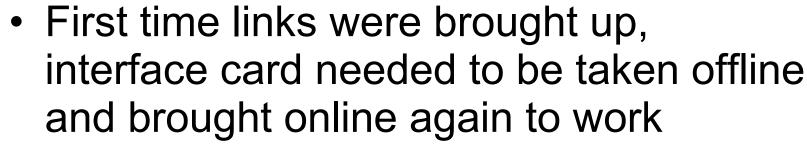
- Just in case there were teething problems
- Still had sufficient capacity
- Took several more weeks until sparing was completed
 - Followed up contractually

Problems

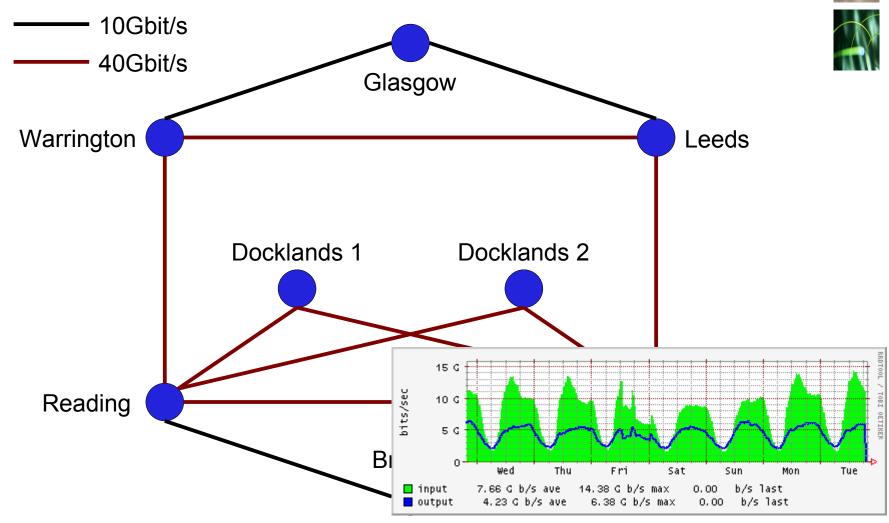
Weekly phone conferences for six months

- So far, only talked about circuits
- What about the routers at either end?

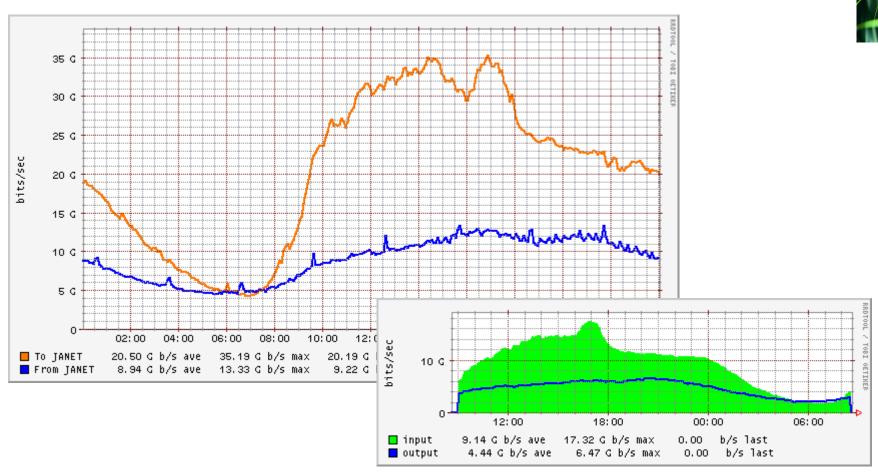
- Started off with Juniper T-640s
 - Eight chassis slots
 - 40Gbit/s per slot
- Some routers would have four STM-256 circuits
 - Half the chassis just for core links
- Upgrade to T-1600s!


- T-640 to T-1600 is an "in-service" upgrade
 - Needs an extra DC feed per PEM
 - Telehousing providers worried about power and cooling
 - Power rating increased from 6.5kW to 9.1kW
- Lots of talking to convince providers we wouldn't be running at maximum power draw
 - Actual draw ~3kW

- Not happened since
 - Even after circuit outage
 - Until two weeks ago after some reprovisioning work...
- Otherwise, not much to report
 - Generally it "just worked."



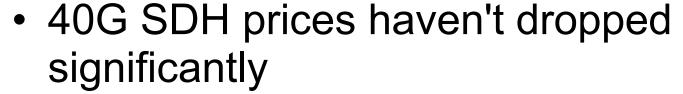
What do we have now?



US Inauguration

Should you go 40G?

- 40G has very strict fibre requirements
 - Aim is for 100G requirements to be closer to 10G requirements
 - Coherent detection' will help things further



Should you go 40G?

- Some large deployments in 2008 may help
 - Maybe not, these have mainly been 'line side' deployments, multiplexing 1GE/2.5G/10G circuits onto 40G wavelength
- SDH reaching the end of its life
- 'Carrier Ethernet' the way forward

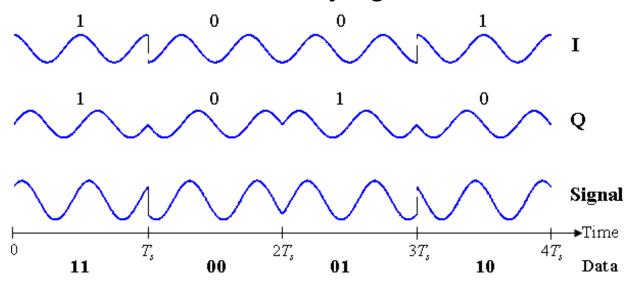
Should you go 40G?

- 100G standardisation marches on
 - We've started looking at it for technology trials soon
 - Line side available before client side
 - Considering deployment in 2011-2012
 - But... will your chassis route/switch 100G/slot?
- 40G is here now

Credits

- Ciena
- Nortel
- Alcatel-Lucent and Juniper

Questions?



POLMUX-DQPSK

Quadrature Phase Shift Keying

2 bits per symbol, ~ 1bit/s/Hz

Diagram by wikipedia:User:Splash

Two DQPSK signals sent down the fibre at the same frequency with different polarisations

- 2 x 2 bits per symbol = 4 bits per symbol
 ~2 bit/s/Hz
- Can carry 100Gbit/s signals (112Gbit/s for ODU-4) within neighbouring 50GHz ITU grid channels