#### The Intra-domain BGP Scaling Problem

Danny McPherson <u>danny@arbor.net</u> Shane Amante <u>shane@level3.net</u> Lixia Zhang <u>lixia@cs.ucla.edu</u>

# Objective

- Outline issues with BGP scalability caused by network path explosion
- Concerted focus on intra-domain routing
- Broad array of areas for concern/improvements
  - BGP protocol constraints
  - Implementation issues
  - Network architecture
  - External effects
- Conclusions

# Agenda

- Objective
- Background, BGPisms
- What breaks first?
- A look Route Reflection
- Network Architecture Considerations
- Miscellaneous
- Conclusions

# It's All About Perspective!

- Most, if not all, of BGP scalability, stability analysis today is based on one or more views of external BGP sessions
- Internal BGP dynamics are very different, and very dependent on network design, vendor implementations, etc..
- More study of internal BGP views at various levels of internal BGP hierarchy (if exists) necessary (some underway)

### **BGPisms**, Background Slides

# Topology: The Bogey Man!

- BGP behavior dependent on topology
- Making connectivity (internal & external) richer SHOULD result in improved reliability
  - but instead may cause convergence delays of multiple minutes when routes flap
  - even in the absence of flap dampening
- This is a path hunting problem which won't go away until it is solved
  - Until then, it causes escalation of BGP update counts and convergence delay

# eBGP - iBGP - eBGP

- Multiple offset update receipt or processing variance can trigger withdraw + new announcement where just new announcement would have otherwise been sufficient
- Can cause cascade of unnecessary path hunting
- Rich topological connectivity (internal or external) can result in badly behaved path selection and announcement, in race conditions prior to new correct state while withdrawals flood the global DFZ
- Behaves badly because of limited local knowledge with exponential badness based on N^M, (where N is number of paths from a given AS to the end site, and M is the number of ASes in the path). M typically 4-6, N can be double digits

# Minimum Route Advertisement Interval (MRAI)

- Needed to prevent runaway melt-down of router CPUs
- Has adverse effects when doing path hunting (legitimately)
- Need for negotiated and configurable timers for external and internal BGP, per peer and AFI/SAFI - environment-specific
- Interaction between successive run timers whose values differ can make things worse!
- Common default MRAI 0 seconds

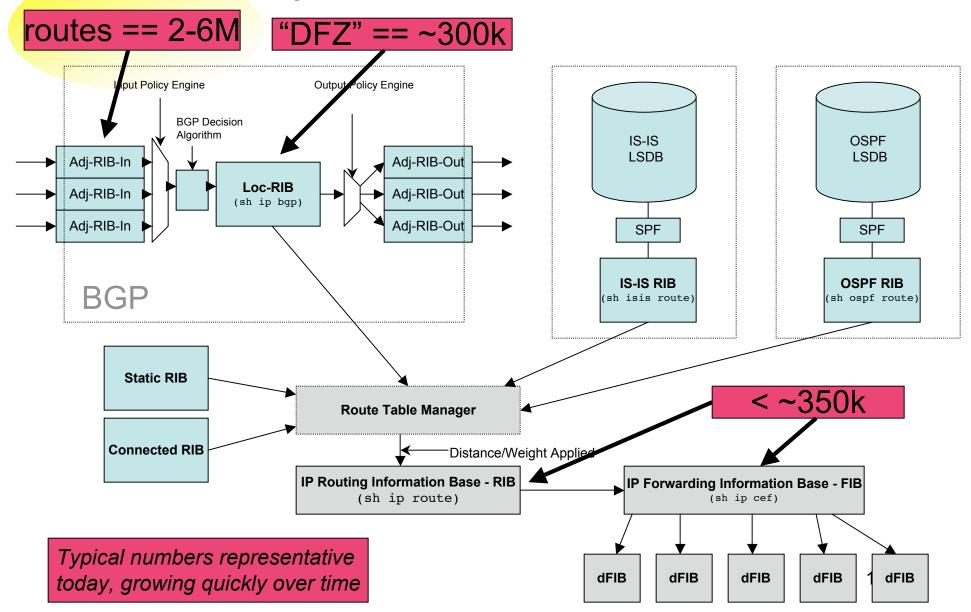
# **BGP Impacting Factors**

- Only best routes sent (currently)
- Even if multiple routes sent, only best installed in FIB
- Lack of information on alternative paths prevents look-ahead, also leads to update flooding whenever the best path changes
- Regardless of other improvements, delay of updates will be bounded above by speed of light in fiber (Nominal Velocity of Propagation ~200 km/s) && packet regeneration time
- Intermediate states in path hunting may be (and often are) completely bogus

# **IGP & BGP Interaction**

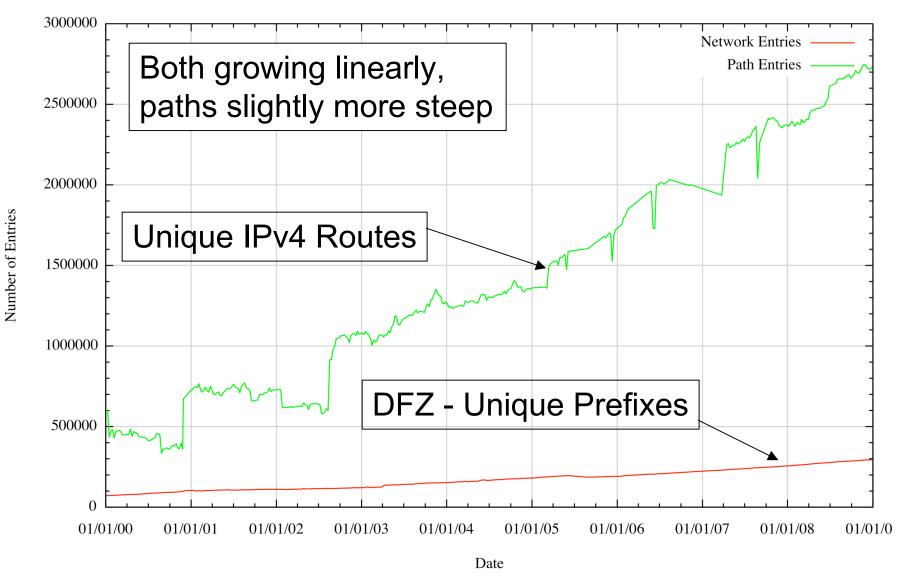
- IGPs typically carry only NEXT\_HOP and session reachability information for BGP
- iBGP NEXT\_HOP is often ingress router loopback, ideally keep external interfaces out of IGP for stability reasons
- No use of IGP/BGP synchronization, using this would mean each router has to have full set of BGP routes in their IGP in order to preserve destination reachability
- IGP metrics often uses to populate BGP MEDs - or determine best 'hot-potato' location

#### iBGP Route Advertisement Rules


- iBGP rule: a route learned from one iBGP speaker can't be propagated to another iBGP speaker - else routing information loops will occur
- As such, iBGP full mesh required:: N(N-1)/2 sessions
- This iBGP rule can be relaxed, however (with introduction of new path vectors)
  - route reflection; introduces cluster ID, cluster lists and originator ID attributes (serve as path vector)
  - AS Confederations; partition AS into sub-ASes, full mesh still required within sub-AS, introduces AS\_CONFED\_\* attributes (serve as path vector)
  - Some ISPs use both RR and Confederations, some one, some neither
  - RRs can be used hierarchically within a routing domain

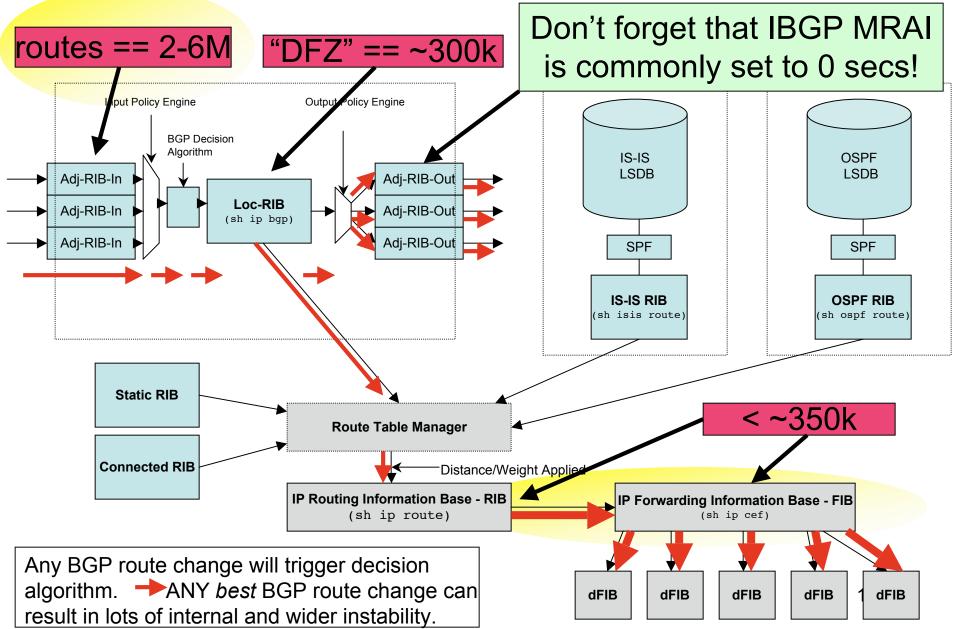
#### What Breaks First?

# What Breaks First?


- Considerable amount of focus on "DFZ size" the number of unique *prefixes* in the global routing system - ultimate FIB size is considerable issue
- However, second issue is number of *routes* (*prefix, path attributes*) and frequency of change
- More routes == more state, churn; effects on CPU, RIBs && FIB
- Routes growing more steeply than unique prefixes/DFZ

#### **Conceptual Router Architecture**




## Growth: Prefixes v. Routes

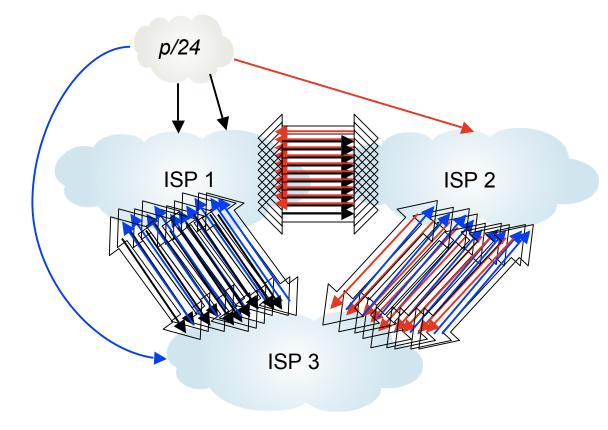
Network Entries (Prefixes) vs. Path Entries



Copyright 2009 Level 3 Communications, Inc. All rights reserved.

#### ANY Best Route Change Means....




Why is # of unique routes increasing faster than # of prefixes?

- Primarily due to <u>denseness of interconnection</u> <u>outside of local routing domain</u>
  - Increased multi-homing from edges
  - Increased interconnection within core networks
- Each new unique prefix brings multiple unique routes into the system
- Function of routing architecture internal BGP rules, practical routing designs, etc..
- More routes result in extraneous updates and other instability not necessarily illustrated in RIB/FIB changes

#### External Interconnection Denseness

- More networks interconnecting directly to avoid transit costs, reduce transaction latency, forwarding path security (e.g., avoid hostile countries / "cyberlock"),
  - More networks building their own backbones (e.g., CDNs), have presence in multiple locations
  - More end-sites and lower-tier SPs provisioning additional interconnections
  - SPs adding more interconnections in general to local traffic exchange and accommodate high-bandwidth capacity requirements
  - The "peer with everybody" paradigm
- Increased interconnections made feasible by excess fiber capacity and decreasing cost, offset transit costs
- More interconnections means more unique routes for a given prefix

#### **External Interconnection Denseness**



#### ISP1 - one unique prefix (p), 22 routes total on PE routers


- Consider N ASes: if an edge AS E connects to one of the N ASes, each AS has (N-1) paths to each prefix *p* announced by E
- When E connects to n of N ASes, each AS has at least n\*N routes to p
  - In general the total number of routes to p can grow super-linearly with n
  - Edge AS multi-homing n times to the same ISP does NOT have this effect on adjacent ISPs
- It's common for ISPs to have 10 or more interconnects with other ISPs
  - when E connects to n ISPs, each ISP likely to see n\*10 routes for p announced by E
- New ISPs in core, or nested transit relationships, often exacerbate the problem

# Effects of Attribute Growth

- More unique attributes means more unique routes
- Results in less efficient update packing; more BGP updates, more BGP packets
- Common expanding attribute types
  - AS path
  - Communities
  - MEDs
  - Others (AFI/SAFIs, route reflection attributes)

## Unique Attribute Growth

Miscellaneous Attributes



Copyright 2009 Level 3 Communications, Inc. All rights reserved.

#### A Peek Into Route Reflection

# **Route Reflection**

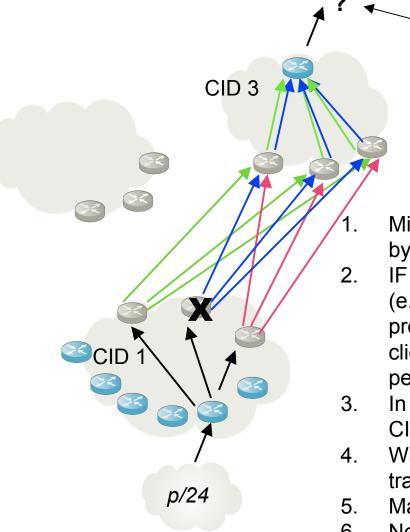
- While route reflection (RR) does provide implicit aggregation by only propagating single "best route"
- RR may result in additional routing system state
- RR guidelines recommend that RR topology be congruent to IP network topology to avoid forwarding loops - difficult constraint in real networks (in general, RRs should not peer through client)
- Often 2-6 RRs per cluster, mirrors core or aggregation router physical or network layer interconnection topology
- Some ISPs have 3-4 tiers of RRs, most just one
- RRs within cluster typically fully meshed
- A RR client connects to multiple RRs
- Absent other attributes, closest eBGP learned route often preferred result is that each RR advertises one route to all other BGP speakers at same "tier"
  - E.g., 5 interconnections with another AS, with 3 RRs per cluster, could result in 15 routes per RR for a single prefix!

## **Route Reflection Illustrated**

Client-Client Reflection Full iBGP RR mesh 3 RRs per Cluster

1. eBGP learned prefix p

p/24


- 2. Client tells 3 RRs
- 3. Each RRs reflects to ALL clients AND normal eliBGP peers
- 4. Each RR in **other** clusters now has 3 routes for prefix
- 5. IF edge AS multi-homes to another cluster, each RR will have 6 routes for prefix, etc.. 24

6. ISPs commonly interconnect at 10 or more locations

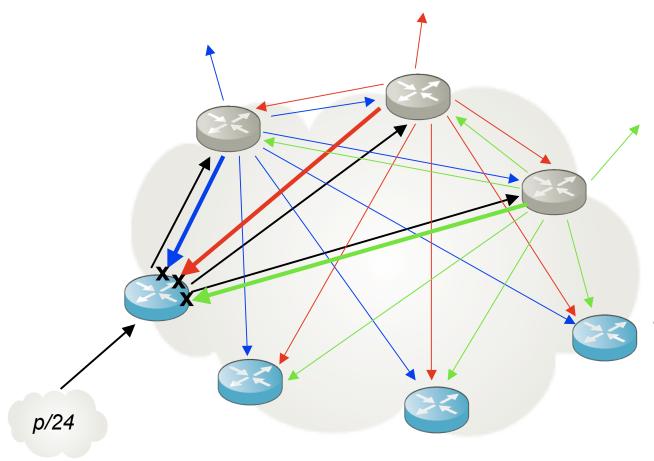
# **RRs and Gratuitous Updates**

- An RR crashes or a link failure changes network view of best path to BGP next hop
- New BGP route will be propagated to all BGP speakers because of change in RR cluster list, even if next hop and all other attributes and reachability are unchanged.
- Can occur with single or multiple RR tiers, can occur with common or unique cluster IDs
- When RR or link is available again, transitioning back to previous best path results in more BGP updates
- Other reasons for extraneous updates, research paper in the works w/Level(3), UCLA, Arbor
- An "avoid transition" mechanism is desirable for cluster lists of same length if all other attributes remain the same

## **Extraneous Updates**



Duplicate external announcements, Flap dampening state per prefix, duplicates penalized accordingly


Middle RR in cluster 1 was preferred route for prefix *p* by RRs in cluster 3, it crashes

- IF RRs in cluster 1 are using unique CIDs per RR (e.g., default router IDs), then RRs in cluster 3 must propagate new route (implicit withdraw for previous) to client, even though only cluster list contents changed, perhaps not even forwarding path
- 3. In mutli-tier RR, this can occur even with common CIDs for RRs within a cluster
- 4. When the failed router is restored, all routes will transition back
- 5. May trigger gratuitous eBGP updates as well
- Need mechanism akin to eBGP Avoid best transition (RFC 5004) for iBGP cluster lists of same length when only cluster list values change

# **RR** Advertisement Rules

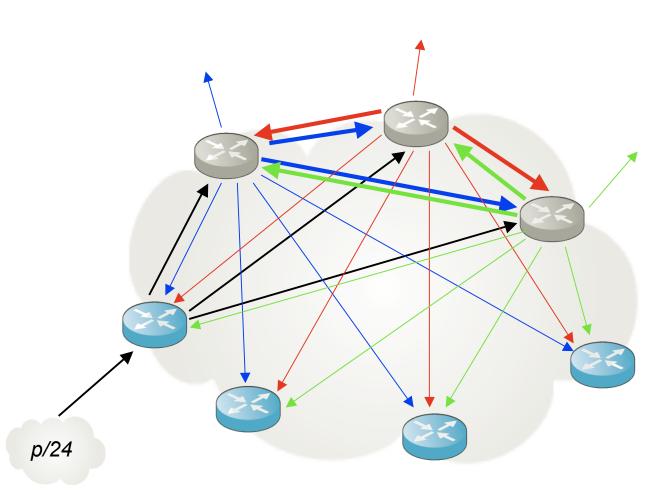
- Change in specification from RFC 1966 to RFC 2796:
  - Change allowed an RR to reflect a route learned from a client back to that client
  - Change made to optimize local implementation (copying of updates task); no care given to system-wide effects
- Client now has to know it's a client and "poison" received routes where Originator ID added by RR is equal to local BGP Router ID
- Consider example with 100k best routes from client with 3 RRs - client now has to discard 300k routes received from RRs that were reflected back to client, whether common or unique cluster IDs on RRs
- The updates are not benign processing may delay legitimate update processing
   27

# **RR Rule Change**



- 1. p/24 reflected from RRs back to originating client
- Client expected to poison if Originator ID == Router ID
- May not be issue with one prefix, but often 100k or more reflected back from each RR - all to be processed and discarded by client
- A moderate RR implementation change led to high process cost at client

# And furthermore...


- Proposed IP VPN technique aims to exploit this behavior to minimize \*local\* configuration
  - Define community (ACCEPT\_OWN) to allow acceptance of routes (not poison) by client, even if Originator ID equals local Router ID, if community present
  - Allows upstream RR to distribute routes between VRFs on local PE
  - Saves having to configure local inter-VRF redistribution policies on each PE
- In fairness, different overlay RRs are often used for IP-VPN address families...
- draft-ietf-I3vpn-acceptown-community

Network Architecture Considerations

# **RR Cluster IDs**

- Unique Cluster IDs per RR within a given cluster can result in significant number of extraneous routes
  - Each RR will maintain routes from other RRs sourced from clients within cluster versus discarding - even if RR is NOT in forwarding path (i.e., useless)
  - E.g., A client with 3 RRs in cluster and 100k "best routes" means 300k Adj-RIB-In entries on \*each\* RR
  - Client-client reflection v. full-client iBGP mesh within cluster may or may not help this
  - Note: RRs within cluster usually fully-meshed because of external peers, configuration templates, etc..
- More unique attributes, less update packing ability, more state, more churn

# Effects of Unique Cluster IDs



- 1. Common deployment model: each RR has a unique cluster IDs within cluster (default to RID).
- 2. Result is each RR storing redundant routes from other RRs within same cluster
- 3. May not be issue with one prefix, but if lots of prefixes, can be very significant needless overhead
- 4. With common cluster ID RRs would poison each others routers based on cluster list path vector
- 5. Further optimization might be for RR configuration knob to identify iBGP RR peers within same cluster or ORF iBGP-like model; to avoid update advertisement for client prefixes

# Network Architecture Effects

- Placement of peers v. customers, etc..
- Number of RRs per cluster
- Additional RR hierarchy
- Common v. unique cluster IDs
- Client-Client reflection v. full client mesh
- Overlay Topologies for other AFs
- IP Forwarding path congruency?
- Resetting attributes on ingress (e.g., community resets, MED resets) to optimize update packing, but may result in more routes (as local "best")
- More low-end routers > more BGP speakers > more unique routes - effects of economic climate?
- Operators: LOTS of room for improvement here <sup>33</sup>

#### Miscellaneous

# New BGP Address Families

- New address families carried in BGP:
  - Higher BGP load
  - Change to **BGP** code base
  - Often on same routes and global "Internet" routers
- Example BGP AFs/SAFs include:
  - IP6
  - IP-VPN
  - BGP Flow Specification
  - Pseudo Wires
  - L2VPN
  - 2547 Multicast VPNs
- In fairness, many (most?) of these non-IPv4 unicast AFs employ overlay RR topologies rather than the native BGP topology
  - Note: reasonable where PE-PE MPLS LSPs or tunnels exist, but for native hop-by-hop IP Network layer forwarding <u>strong</u> <u>consideration should be given to topology, forwarding loops, etc..</u>
- Is this better than running another protocol? Perhaps. Perhaps not....

# Effects on Routing Security

- Each route has to be authorized on per-peer basis, all viable routes need to be pre-enumerated
- Ideally, policy considers both AS\_PATH and prefix per-peer; today most policy only prefix per-peer (prefix-based ACLs) IF at all
- Origin AS filtering alone provides very little benefit (can be spoofed, permits route leaks)
- Very little to no inter-provider filtering
- More routes means more policies that need to be configured, more routes that need to be authorized
- Explicit BCP 38 or anti-spoofing must factor feasible routes as well, else asymmetry will break forwarding

# Additional IDR Work

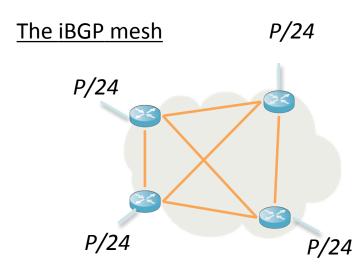
- Work on ways to add new paths (versus remove extraneous ones)
  - In order to enable route analytics (e.g., draft-ietfgrow-bmp)
  - Mitigate BGP route oscillation (RFC 3345)
  - iBGP Multi-path
- Trade-off is expense of extra state versus oscillation reduction and iBGP multi-path support

# Other BGP Issues

- BGP Wedgies
- Non-transitive attributes result in best path change, duplicate update propagation to eBGP peers
- Persistent Route Oscillation Condition
- RR topology congruency guidelines
  - Per-AF topologies changing mindset
  - Multiple RRs makes difficulty
  - IGP Metric constraints

## Conclusions

- # routes (v. unique prefixes) effects everything, increasing over time and more steeply than DFZ
- This is where things will break first
- Just because an update doesn't make it into the RIB doesn't mean it's benign
- Possibilities for protocol, implementation, network architecture improvements
- Operators, implementers, scalable routing designs need to consider these factors


# Acknowledgements

- Level(3) Communications
- Ricardo Oliveira, Dan Jen, Jonathan Park & rest of UCLA team
- Keyur Patel @Cisco
- Craig Labovitz @Arbor (early work on stability)
- Halpern, Morrow, Rekhter, Scudder, BD for new and previously agreeing and dissenting views on the content in the slides, and recommended improvements

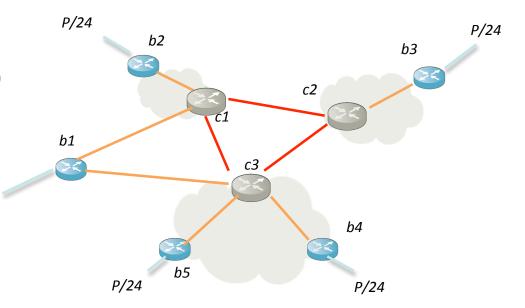
## EOF

# **Internal Route Amplification**

- Look at different architectures and evaluate them according to:
  - + RIB-in scaling: number of entries per prefix in RIB-in
    + Path redundancy: number of possible BGP paths to a prefix; path redundancy is a rough upper bound of the churn involved in path exploration

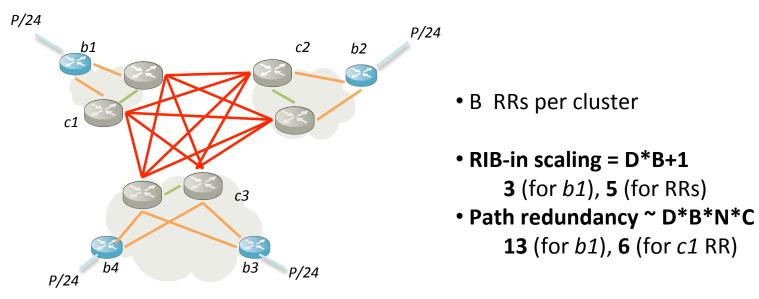


- Assume an iBGP mesh w/ n routers, in this case n=4
- A prefix P being received in eBGP at each border router
- Each border router will have **n** routes to reach P
- RIB-in scaling = n = 4
- Path redundancy = n =4


#### The single level RR

- N clusters connected in a mesh (N=3 here)
- Cluster size C (number of clients per cluster)
- Each border router connects to D clusters
- RIB-in scaling = D+1

  3 (for *b1*), 4 (for *c1* RR)


  Path redundancy ~ D\*N\*C

  7 (for *b1*), 6 (for *c1* RR)



Adding redundancy in RRs per cluster...

P/24

