

IPv6 deployment at IIJ

Matsuzaki 'maz' Yoshinobu <maz@iij.ad.jp>

Copyright (c) 2008 Internet Initiative Japan Inc.

IIJ network

- pure IP network
 - now dual stacked

– no MPLS

• IIJ/AS2497 maintains its backbone in Japan and U.S..

History of IIJ's IPv6 service

• 1999

- IPv6 over IPv4 tunnel service (experimental)

- 2000
 - IPv6 native service (leased line, experimental)
- 2001
 - IPv4/IPv6 dual stack service (leased line)
 - IPv6 data center service
 - IPv6 over IPv4 tunnel service for consumers

business model

- IIJ sells bandwidth
 - Customers can select protocol(s) which should be forwarded on the link
 - IPv4 only
 - IPv4/IPv6 dual stack
 - IPv6 only
 - Or, customer can ask IPv6 over IPv4 tunnel for free.

History of IIJ's IPv6 backbone

- Initially we started with dedicated backbone
- 1998
 - PC based router(kame stack)
 - tunnel and ethernet
- 2000
 - cisco c72xx series
 - tunnel, ethernet and T1 line

brief backbone topology as of today

• dual stack as possible

addressing

- /128 for loopback interfaces
- /64 for links
 - /127 is used on several inter-router links
- /48 for customer sites
 - still considering the size
 - possible sizes are: /48, /52, /56, /60, /64

interface ID

2001:0db8:0000:0000:0000:0000:0000:0001

- We assign unique 64bit ID to every router.
 - A router uses the ID as its interface id on every interface.
 - No correlate with IPv4 address
- exception
 - customer facing interface
 - /127

global unicast address

- Inter-router link does not require global address inside AS
 - OSPFv3 uses link-local address to exchange LSAs
 - only loopback interface needs to configure global address
- But we configure global address on every interface
 - as ping destination to check availability

link-local unicast address

- fe80::/64
- AS IS

– We don't touch

- Most routers use Modified EUI-64 format address
- A virtual address for vrrp/hsrp is another story.
 - Customers might configure a static route at their equipments with this address, so the address should be assigned statically like fe80::1.

route aggregation inside AS

- not so aggressive at this moment
 - We allocate /56 to every POP for links inside POP
 - But currently, # of IPv6 prefix << # of IPv4 prefix</p>

IPv6 Routing Table Summary - 1915 entries
5 local, 2 connected, 0 static, 0 RIP, 1329 BGP, 0 IS-IS, 579 OSPF, 0 EIGRP
Number of prefixes:
/8: 1, /16: 1, /19: 2, /20: 4, /21: 3, /22: 1, /24: 1, /25: 1
/26: 5, /27: 3, /28: 6, /30: 2, /31: 1, /32: 998, /35: 30, /40: 3
/41: 1, /42: 1, /43: 1, /44: 2, /45: 1, /46: 2, /47: 3, /48: 216
/49: 1, /53: 1, /56: 7, /64: 454, /126: 2, /127: 2, /128: 159

routing protocols

IPv4

- OSPFv2
 - mostly area 0
 - md5 authentication
- BGP4
 - peer through ipv4
 - route-reflector
 - md5 authentication

IPv6

- OSPFv3
 - area 0 only
 - ipsec authentication
- BGP4+
 - peer through ipv6 global
 - route-reflector (same as IPv4)
 - md5 authentication

IPv4/IPv6 separation in a router

- IPv4 and IPv6 are different protocols
 - should not affect each other
 - only sharing CPU, memory and bandwidth
- Quality of IPv4 network is still main concern in our business.

router ID

- Routing protocols usually require 32bit ID
 - even a routing protocol for IPv6
 - We use IPv4 address of loopback interface as its router ID
- Every routers has IPv4 address in our network

OSPFv3 link cost

- We set the same link cost value as IPv4's.
 - The network topology is almost same.
 - working fine \bigcirc
- When we were using RIPng as IGP (there was no choice at that time ⁽³⁾), it was so much trouble.

BGP4+ nexthop attribute

- AS IS
 - We keep the nexthop attribute heard from eBGP.
 - no nexthop-self
 - same as IPv4 case at IIJ
- So we are importing prefixes of IXs and PNIs into OSPFv3.

BGP4+ multipath

- for testing purpose
 - The traffic level of IPv6 is low at this moment.
 - But we configure iBGP multipath at our backbone.
- still confusing multipath behavior
 - 2 BGP multipath and 2 IGP ECMP for each nexthop
 - 4path?
 - 2path?

management

- remote access to a router (ssh/telnet)
 - IPv4/IPv6 dual stack
 - out-of-band port has IPv4 address only
- other services
 - IPv4 only
 - AAA, snmp, syslog, ntp, flow export

availability check

- checking by ping
 - both IPv4 and IPv6
 - dual stack routers receive ping twice as much

monitoring

• We have to know about our network. ☺

- traffic volume and so on

- We are waiting for
 - MIB for IP [RFC4293]
 - NetFlow v9 [RFC3954] for IPv6

ACLs

- Infrastructure ACL
 - not yet deployed, but we are still considering
 - We have allocated certain block for our infrastructure so that ACL rules become simple.
- Received ACL
 - nightmare with next header chain...

concerns

- license fee
- packet ping-pong on a point-to-point link
- loopback testing and DAD
- next header
- ndp flood
- subnet router anycast address
- "u" bit in the interface identifier

license fee

• more cost to use 'IPv6 code'

– an obstacle to deploy IPv6 in the world $\ensuremath{\mathfrak{S}}$

ping-pong on p2p link

- spec vs. implementation
 - ICMPv6[RFC4443] says

• I prefer /127 on inter-router links.

loopback testing

- a hard/soft loop for a SONET link checking
 - to check the link at installation
 - running for 24hours or so
 - error counters
 - for troubleshooting
 - alarms
- A router see itself through the looped link.

loopback testing and DAD

- An interface comes up when looped.
- IPv6 nodes have to perform DAD before use the address.
- Some routers get confused with this situation.
 - No IPv6 processing at the looped interface

next header

- We are annoyed by a packet filter
- for transit traffic
 - should we limit # of header chain?
- for traffic to a control plane
 - how to build appropriate rules...

ndp flood

- A remote user can send packets to every address in /64.
 - ndp flood at the segment
 - too many state on a router
 - continuous packets might cause DoS after expiring current ndp cache

subnet router anycast address

- one of the barriers to use /127
- Do we need this anycast address?

– No.

- It seems vendors disable this by default.
- No one uses the network address in IPv4 anymore

"u" bit in the interface identifier

- universal/local bit
 - It is still kept for 'future technology'

draft-ietf-6man-reserved-iids-01

If the interface identifiers are generated from an unique token like an ethernet MAC address, they need to set bit 6 of the first octet to one. If they are not generated from an unique token they need to set bit 6 to zero.

- Who cares?
 - totally useless

