Bidirectional Forwarding Detection (BFD)

Introduction, Update and Applications

Matt Kolon matt@juniper.net APRICOT 2005 - Kyoto

Overview

- Goals
- Protocol Overview
- Applications
- Adoption Status
- Conclusion

Detecting Forwarding Failures

- In IP, historically a function of the routing protocol
 - Because formerly, routing = forwarding
 - Fault resolution in perhaps tens of seconds
 - This is too slow for anything but best-effort IP
 - Sometimes there is no routing protocol!

Goals of BFD

- Faster convergence of routing protocols, particularly on shared media (Ethernet)
- Semantic separation of forwarding plane connectivity and control plane connectivity
- Detection of forwarding plane-to-forwarding plane connectivity (including links, interfaces, tunnels etc.)
- A single mechanism that is independent of media, routing protocol, and data protocol
- Requiring no changes to existing protocols

BFD Protocol Overview

- At its heart, Yet Another Hello Protocol
- Packets sent at intervals; neighbor failure detected when packets stop arriving
- Intended to be implemented in the forwarding plane where possible
- Context defined by encapsulating protocol
- Always unicast, even on shared media

BFD Operation

0	1		2	3	
0 1 2	3 4 5 6 7 8 9 0	1 2 3 4 5 6	7 8 9 0 1 2 3	3 4 5 6 7 8 9 0 1	
+-					
Ve:	rsion H Dia	gnostic	Detect Mult	Length	
+-					
1		My Disc	er		
+-					
1		Your Dis	scr		
+-					
1	De	sired Min TX	(Interval		
+-					
I	Req	uired Min RX	(Interval		
+-					
I	Requi	red Min Echo	RX Interval		
+-+-+-	-+-+-+-+-+	-+-+-+-+-+		-+-+-+-+-+-+-	+

Two BFD Modes

- Asynchronous Mode
 - Control packets flow in each direction

- Echo Mode
 - Slower control packets, echo packets loop through remote system

BFD Applications

- IGP liveliness detection
- Tunnel liveliness detection
 - MPLS LSPs
 - IP-in-IP/GRE tunnels
- Edge network availability
- Liveness of static routes
- Host reachability (e.g media gateways)
- Switched Ethernet integrity

BFD for IGP Liveliness Detection

- One of the first motivations for BFD
- Faster convergence particularly on shared media
 - Sub-second IGP adjacency failure detection
- IGP hellos can be set to higher intervals
 - Can improve IGP adjacency scaling

BFD for MPLS LSPs Layer 2 Transport over MPLS

Periodic BFD Fault Detection on Tunnel LSP and/or MPLS PW

MG to Router Connection with BFD

- Call preserved only under specific MG application control
- Router PIC Failure
 - Connectivity of A1 and B1 protected by A2 and B2 respectively (vice-versa)
 - Call preserved with packet-loss period (dependant on detection and re-route times)
- Router System Failure
 - Connectivity of A and B protected by Abu and Bbu respectively (vice-versa)

BFD for Edge Availability Voice over IP

- MGW Media Gateway
- BFD between MGW and PEs
- Enables fast detection/failover

BFD for Edge Availability Voice over IP

BFD session failure

PE1 switches to a backup route through PE2 to reach MGW1

BFD IETF Status

- Protocol jointly developed by Juniper and Cisco
- Base spec: draft-katz-ward-bfd-03.txt
- Over IP: draft-katz-ipv4-ipv6-01.txt
- Over MPLS: draft-raggarwa-mpls-bfd-00.txt
- Much enthusiasm and citation in other drafts
- A BFD WG has been formed

Conclusion

- BFD solves some problems that IP networks need to move beyond best-effort
- It's simple and lightweight
- Increasing interest in the service provider and development communities
- Shipping in router code for over a year
- Many vendors committed to support

Thank You

Matt Kolon matt@juniper.net

