MPLS Layer 2 and Layer 3 Deployment Best Practice Guidelines

Monique Morrow

mmorrow@cisco.com

February 21 2005
Prerequisites and Scope

• Must understand fundamental MPLS principles

• Must understand basic routing especially BGP
Agenda

• Dynamics and Background
• Layer 3 : Half-Duplex VRF
• Inter-Provider Considerations
• Layer 2 Deployment Considerations
• A Word on VPLS
• A Word on Traffic Engineering
• Management Considerations and MPLS OAM
• Security Considerations
• What About G-MPLS?
• Summary
Service Provider Network Operation

- Create operational efficiencies and increase automation in a highly technology-intensive market
- Enable competitive differentiation and customer retention through high-margin, bundled services
- Progressively consolidate disparate networks
- Sustain existing business while rolling out new services
MPLS’s Momentum in Convergence & Service Creation

- **IDC, July 2004:**
 Increasingly, service providers use MPLS as the cornerstone for traffic routing capabilities for converged frame, ATM, and packet based networks to improve QoS visibility and assure service level guarantees.

- **CIBC World Markets, June 2004:**
 The most significant trend was a wholesale shift to IP-MPLS as the new foundation technology for carriers’ data networks. This transition appears irreversible and is gaining momentum surprisingly fast.

- **Heavy Reading Jan. 2004:**
 Most of the world’s telecom service providers now agree in principle that they must migrate to converged backbones, and that MPLS (Multiprotocol Label Switching) technology will enable this migration.

- **Heavy Reading Sep. 2003:**
 MPLS is gaining support from MSPP vendors as a key mechanism for enabling packet services, QoS, and traffic engineering in the metro.

- **Even in Dilbert Comic Strip, May 2004:**
MPLS Services and Transport Network Management

Layer 2/3 Management Essentials: IP/MPLS Routing, QoS, TE, OAM, HA
Agenda

• Dynamics and Background
• Layer 3 : Half-Duplex VRF
• Inter-Provider Considerations
• Layer 2 Deployment Considerations
• A Word on VPLS
• A Word on Traffic Engineering
• Management Considerations and MPLS OAM
• Security Considerations
• What About G-MPLS?
• Summary
Why Half Duplex VRFs?

Problem

- Only way to implement hub and spoke topology is to put every spoke into a single and unique VRF
 Ensures that spokes do not communicate directly
- Single VRF model, which does not include HDV, impairs the ability to bind traffic on the upstream ISP Hub
Why Half Duplex VRFs? Solution

- HDV allows the wholesale Service Provider to provide true hub and spoke connectivity to subscribers, who can be connected to the:
 - Same or different PE-router(s)
 - Same or different VRFs, via the upstream ISP
Technical Justification

• Problem
 PE requires multiple VRF tables for multiple VRFs to push spoke traffic via hub
 If the spokes are in the same VRF (no HDV), traffic will be switched locally and will not go via the hub site

• Solution
 HDVs allows all the spoke site routes in one VRF

• Benefit
 Scalability for Remote Access to MPLS connections
 Reduces memory requirements by using just two VRF tables
 Simplifies provisioning, management, and troubleshooting by reducing the number of Route Target and Route Distinguisher configuration
Hub & Spoke Connectivity Without HDV Requires Dedicated VRF Tables Per Spoke

- All the spokes in the same VPN (yellow)
- Dedicated (separate) VRF per spoke is needed to push all traffic through upstream ISP Hub
• If two subscribers of the same service terminate on the same PE-router, then traffic between them can be switched locally at the PE-router (as shown), which is undesirable.

• All inter-subscriber traffic needs to follow the default route via the Home Gateway (located at upstream ISP).
Terminology

- **Upstream VRF**

 Used to forward packets from Spokes to Hub

 Contains a static default route

- **Downstream VRF**

 Use to forward packets from Hub to Spoke

 Contains a /32 route to a subscriber (installed from PPP)
• If two subscribers of the same service terminate on the same PE-router, traffic between them is not switched locally.
• All inter-subscriber traffic follows the default route via the Home Gateway (located at upstream ISP).
Half Duplex VRF Functionality

1. HDVs are used in only one direction by incoming traffic
 Ex: upstream toward the MPLS VPN backbone or downstream toward the attached subscriber

2. PPP client dial, and is authenticated, authorized, and assigned an IP address.

3. Peer route is installed in the downstream VRF table
 One single downstream VRF for all spokes in the single VRF

4. To forward the traffic among spokes (users), upstream VRF is consulted at the Spoke PE and traffic is forwarded from a Hub PE to Hub CE
 Return path: downstream VRF is consulted on the Hub PE before forwarding traffic to appropriate spoke PE and to the spoke (user)

5. Source address look up occurs in the downstream VRF, if unicast RPF check is configured on the interface on which HDV is enabled
1. PPP user initiates a session with PPP session using a name Subscriber-A@ISP-A.com and password
2. LAC/PE-router sends username information to the WholesaleServiceProvider Radius Server
3. ISP-A (service name) is used to index into a profile that contains information on the IP address of the Radius server of the ISP-A
4. Subscriber-A@ISP-A.com and password is then forwarded from the Wholesale Provider Radius server (which acts as a "proxy-radius"), towards the ISP Radius server
5. ISP-A Radius server authenticates and assigns IP address
6. ISP-A Radius server sends "Access-Accept" to Wholesale Service Provider Radius Server
7. The wholesale Service Provider Radius server adds authorization information to the Access-Accept, (based on the domain or servicename)and the VRF to be used by Subscriber-A, and forwards it to PE-WholesaleProvider-LAC router
8. PE-WholesaleProvider-LAC router creates temporary Virtual-Access interface (with associated /32 IP address) and places it into the appropriate VRF
Reverse Path Forwarding Check

• Reverse Path Forwarding (RPF)
 Used by Service Provider determine the source IP address of an incoming IP packet and ascertain whether it entered the router via the correct inbound interface

• Concern
 HDV populates a different VRF than the one used for “upstream” forwarding

• Solution
 Extend the RPF mechanism so the “downstream” VRF is checked

• To enable RPF extension, configure:
 `ip verify unicast reverse-path <downstream vrfname>`
Upstream traffic (ie: traffic toward the upstream ISP or toward another subscriber) is sent to the hub PE-router and forwarded across the link between the wholesale SP and the ISP.

Subscriber traffic follows a default route within the VRF.

Traffic is forwarded towards and received from the wholesale Service Providers PE-router and the subscriber.
Data flow between two subscribers that belong to different services goes through the hub location of the Service Provider.

Data will traverse through a network exchange point, either public or private, by following a default route within the subscriber VRF.
Topology III: Hub and Spoke Connectivity Via the Same PE-Router (Different Services)

- If two subscribers are terminated on the same PE-router and belong to different services, the data is required to traverse through the home gateways of both services.
Agenda

• Dynamics and Background
• Layer 3: Half-Duplex VRF
• Inter-Provider: Layer 3
• Inter-Provider: Layer 2
• A Word on VPLS
• A Word on Traffic Engineering
• Management Considerations and MPLS OAM
• Security Considerations
• What About G-MPLS?
• Summary
VPN Connectivity between AS#s

- VPN sites may be geographically dispersed
 Requiring connectivity to multiple providers, or different regions of the same provider

- Transit traffic between VPN sites may pass through multiple AS#s
 This implies that routing information MUST be exchanged across AS#s

- Distinction drawn between Inter-Provider & Inter-AS
Inter-Provider Vs. Inter-AS

Inter-Provider Connectivity

Service Provider A

Service Provider B

RR RR

ASBR

ASBR

RR RR

NY POP

WASH POP

SF POP

LA POP
Inter-Provider Vs Inter-AS

Inter-AS Connectivity

Service Provider A
North America Region

Service Provider A
European Region
How to distribute VPNv4 routes between different AS’s?

San Jose
149.27.2.0/24

New York
CE-2

PE-1
CE-1

VPN-v4 update:
RD:123:27:149.27.2.0/24,
NH=PE-1
RT=123:231, Label=(28)

VPN-A VRF Import routes with route-target 123:231
VPN Route Distribution Options

Several options available for route distribution:

- Option A: Multihop MP-eBGP between RRs
- Option B: Back-to-back VRFs
- Option C: Service Provider A to Service Provider B

ASBR ASBR
AS# 123 AS# 456
Service Provider A Service Provider B
Option A – Back-to-back VRFs

- 2547 providers exchange routes between ASBRs over VRF interfaces
 - Hence ASBR is known as a PE-ASBR
- Each PE-ASBR router treats the other as a CE router
 - Although both provider interfaces are associated with a VRF
- Provider edge routers are gateways used for VPNv4 route exchange
- PE-ASBR link may use any PE-CE routing protocol
Back-to-back VRF Connectivity Model

One logical interface & VRF per VPN client

AS# 123
Service Provider A

AS# 456
Service Provider B

CE-1
149.27.2.0/24

CE-2
VPN-A

CE-3
VPN-B

CE-4
VPN-A

PE-1
PE-ASBR

PE-2
PE-ASBR
Back-to-back Prefix Distribution

AS# 123
Service Provider A

AS# 456
Service Provider B

VPN-B VRF Import routes with route-target 123:222

VPN-v4 update:
RD:123:27:152.12.4.0/24,
NH=PE-1
RT=123:222, Label=(29)

VPN-B VRF Import routes with route-target 456:222

VPN-v4 update:
RD:123:27:152.12.4.0/24,
NH=PE-ASBR-2
RT=456:222, Label=(92)

BGP, OSPF, RIPv2
152.12.4.0/24
NH=PE-ASBR1

152.12.4.0/24
NH=CE-2

CE-2

152.12.4.0/24, NH=CE-2

VPN-B

152.12.4.0/24

CE-3

152.12.4.0/24, NH=CE-2

CE-3

152.12.4.0/24, NH=CE-2

VPN-B

152.12.4.0/24

VPN-B

152.12.4.0/24

VPN-B
Back-to-back Packet Flow
Scalability is an issue with many VPNs

1 VRF & logical interface per VPN
Gateway PE-ASBR must hold ALL routing information

PE-ASBR must filter & store VPNv4 prefixes

No MPLS label switching required between providers
Standard IP between gateway PE-ASBRs
No exchange of routes using External MP-BGP
Simple deployment but limited in scope
However, everything just works
Option B – External MP-BGP

- Gateway ASBRs exchange VPNv4 routes directly
 - External MP-BGP for VPNv4 prefix exchange. No LDP/IGP
- BGP next-hop set to advertising ASBR
 - Next-hop/labels are rewritten when advertised across ASBR-ASBR link
- ASBR stores all VPN routes that need to be exchanged
 - But only within the BGP table. No VRFs. Labels are populated into LFIB at ASBR
Label allocation at receiving PE-ASBR

- Receiving gateway ASBR may allocate new label
 Controlled by configuration of next-hop-self
 LFIB holds new label allocation

- Receiving ASBR automatically creates a /32 host route for its ASBR neighbor
 Which must be advertised into receiving IGP if next-hop-self is not in operation (to maintain the LSP)
External MP-BGP Connectivity Model

External MP-BGP for VPNv4
Label exchange between Gateway ASBR routers using MP-eBGP

AS# 123
Service Provider A

AS# 456
Service Provider B

PE-1
ASBR-1

CE-1
VPN-A 149.27.2.0/24

PE-2
ASBR-2

CE-3
CE-4
VPN-B 152.12.4.0/24

VPN-B
External MP-BGP Prefix Distribution

AS# 123
Service Provider A

AS# 456
Service Provider B

PE-1
152.12.4.0/24, NH=CE-2

CE-2
Green VPN
152.12.4.0/24

ASBR-1
VPN-v4 update:
RD:123:27:152.12.4.0/24,
NH=PE-1
RT=123:222, Label=(29)

ASBR-2
VPN-v4 update:
RD:123:27:152.12.4.0/24,
NH=ASBR-1
RT=123:222, Label=(42)

CE-3
Green VPN
152.12.4.0/24

VPN-v4 update:
RD:123:27:152.12.4.0/24,
NH=ASBR-2
RT=123:222, Label=(92)

VPN-v4 update:
RD:123:27:152.12.4.0/24,
NH=PE-1
RT=123:222, Label=(29)

VPN-v4 update:
RD:123:27:152.12.4.0/24,
NH=ASBR-2
RT=123:222, Label=(92)

VPN-v4 update:
RD:123:27:152.12.4.0/24,
NH=PE-2
RT=123:222, Label=(29)
External MP-BGP Packet Flow
VPN Client Connectivity

VPN Sites Attached to Different MPLS VPN Service Providers

How to Distribute Routes between SPs?

VPN-v4 Update:
RD:1:27:149.27.2.0/24, NH=PE-1
RT=1:231, Label=(28)

PE-1

BGP, OSPF, RIPv2
149.27.2.0/24, NH=CE-1

CE-1

VPN-A-1
149.27.2.0/24

AS #1

Edge Router1

AS #2

Edge Router2

PE2

CE2

VPN-A VRF Import Routes with Route-target 1:231

VPN-A-2
External MP-BGP Summary

• Scalability less of an issue when compared to back-to-back VRF connectivity
 Only 1 interface required between ASBR routers
 No VRF requirement on any ASBR router

• Automatic route filtering must be disabled
 Hence filtering on RT values essential
 Import of routes into VRFs is NOT required (reduced memory impact)

• Label switching required between ASBRs
External MP-BGP Summary (Cont).

- Preferred option for Inter-Provider connectivity
 - No IP prefix exchange required between providers
 - Security is tighter
 - Peering agreements specify VPN membership
VPNv4 Distribution Options

Other Options Available, These Two Are the Most Sensible
ASBR Router Protection/Filtering

- **MP-eBGP session is authenticated with MD5**
 Potentially also IPSec in the data plane

- **Routing updates filtered on ingress based on extended communities**
 Both from internal RRs and external peerings
 ORF used between ASBRs and RRs.
 Maximum-prefix on MP-BGP session

- **Per-interface label space for external facing links to avoid label spoofing**
Option C – Multihop MP-eBGP between RRs

- 2547 providers exchange VPNv4 prefixes via RRs
 Requires multihop MP-eBGP session
- Next-hop-self MUST be disabled on the RRs
 Preserves next-hop/label as allocated by originating PE router
- Providers exchange IPv4 routes with labels between directly connected ASBRs using External BGP
 Only PE router BGP next-hop addresses exchanged
 RFC3107 "Carrying Label Information in BGP-4"
RFC3107 – Carrying labels with BGP-4

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Family Identifier</td>
<td>1</td>
</tr>
<tr>
<td>SAFI</td>
<td>4</td>
</tr>
<tr>
<td>Next-hop Lth</td>
<td></td>
</tr>
<tr>
<td>Network Address of next-hop (variable)</td>
<td></td>
</tr>
<tr>
<td># of SNPAs</td>
<td></td>
</tr>
<tr>
<td>Network Layer Reachability Info (variable)</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>MPLS Label</td>
<td></td>
</tr>
<tr>
<td>Prefix</td>
<td></td>
</tr>
</tbody>
</table>

MP_REACH_NLRI Attribute

(Properties defined in RFC 2858)

Prefix plus MPLS label

(Properties defined in RFC 3107)
Multihop MP-eBGP Connectivity Model

Multihop MP-eBGP for VPNv4
(via next-hop-unchanged)

ASBRs exchange BGP next-hop addresses with labels

AS# 123
Service Provider A

VPN-A
149.27.2.0/24

VPN-B
152.12.4.0/24

AS# 456
Service Provider B

VPN-B

CE-1
CE-2
CE-3
CE-4

PE-1
PE-2

RFC3607

ASBR-1
ASBR-2

RR-1
RR-2
Multihop MP-eBGP Prefix Distribution

VPN-v4 update:
RD:123:27:152.12.4.0/24,
NH=PE-1
RT=123:222, Label=(29)

Network=PE-1
NH=ASBR-1
Label=(29)

VPN-v4 update:
RD:123:27:152.12.4.0/24,
NH=CE-2
RT=123:222, Label=(47)

VPN-v4 update:
RD:123:27:152.12.4.0/24,
NH=PE-1
RT=123:222, Label=(29)

Network=PE-1
NH=ASBR-2
Label=(68)
Multihop MP-eBGP Packet Flow
Multihop MP-eBGP Summary

- More scalable than previous options
 As all VPNv4 routes held on route reflectors rather than the ASBRs

- Route reflectors hold VPNv4 information
 Each provider utilizes route reflectors locally for VPNv4 prefix distribution
 External BGP connection added for route exchange

- BGP next-hops across ASBR links using RFC3107
 Separation of forwarding/control planes
Agenda

• Dynamics and Background
• Layer 3 : Half-Duplex VRF
• Inter-Provider : Layer 3
• Inter-Provider: Layer 2
• A Word on VPLS
• A Word on Traffic Engineering
• Management Considerations and MPLS OAM
• Security Considerations
• What About G-MPLS?
• Summary
We will refer to an Inter-provider model when a pseudo-wire circuit will span across 2 different service providers domains or AS’s

- In this model, the SP will have “no” or “very limited” trust between people managing different AS’s…

- Different providers will certainly apply different QoS policies, definition and implementation.

- Inter-provider model will have to have mechanisms for Security and QoS mediation
We will refer to Inter-AS model when a provider (Provider A) has divided its network within multiple domain or ASes.

- In this model, degree of trust between people managing different ASes,
- In general QoS definition and implementation will be consistent across ASes
Pseudo-wire stitching mechanism is the mechanism that permits a service provider to extend an existing pseudo-wire with an other pseudo-wire. In an other words, to replace the attached circuit by an other pseudowire from same type (atom pw with atom pw) or different type (atom pw with l2tpv3 pw).
Pseudo-wire Stitching model

Pro

- QoS model: Re-coloring of EXP value will work
- Security model: light trustiness (LDP, IGP cross boundary of SP’s but is limited to neighbour ASBR)
- Link between ASBR’s is independent of attached-circuit media, on same link, we could have ATM, FR, Ethernet pseudowire, and/or other services (IP, MPLS-VPN, …)
- De-jitter mechanism of De-cell-packing mechanism could occur only at egress PE’s

Cons

- Required to develop pseudowire stitching mechanism and/or to extend auto-discovery mechanism to support multi-as signalling.
- QoS Model: Lot’s of function like shaping and policing function on per pseudowire will required to be developed
- PW redundancy not optimized when NOT USING auto-discovery mechanism
In this model we reuse existing RFC2457bis Multi-AS 10c or Multi-AS TE to build end-end tunnel LSP and to build end-end pseudowire VC’s.
Inter-AS tunnel LSP model

Pro
- Multi-AS model 10c or Inter-AS TE is developed.
- Link between ASBR’s is independent of attached-circuit media, on same link, we could have ATM, FR, Ethernet pseudowire, and/or other services (IP, MPLS-VPN, …)
- PW redundancy can be optimized by optimizing end-end tunnel LSP technique
- De-jitter mechanism of De-cell-packing mechanism could occur only at egress PE’s
- Ease to provisioning

Cons
- Security model : Untrusted (LDP, IGP cross boundary of ASes)
- QoS Model: Lot’s of functions like CoS re-coloring, shaping and policing will not be possible at ASBR (VC labels have NO signification for ASBR).
In summary (what to deploy ?)

- When SP will connect 2 or more of their ASes together (Inter-AS model), the 2nd & 3th model will be certainly the most popular one.
- When the SP will connect to other SPs (Inter-Provider model), the 1st model will be certainly the most popular model to start with.
- If SP’s start to have numerous circuits with some specific partners, then the second model may be interesting to consider.
Deployment/Architecture Challenges

- As with all technologies there are challenges
 Control-plane Scale
 Filtering & route distribution
 Security
 Multicast
 QOS/End-to-end SLA’s
 Integration of services e.g. Layer-2/Layer-3
 Network Management
 Traffic Engineering
- Opportunity for industry collaborative development!
Agenda

- Dynamics and Background
- Layer 3: Half-Duplex VRF
- Inter-Provider: Layer 3
- Inter-Provider: Layer 2
- A Word on VPLS
- A Word on Traffic Engineering
- Management Considerations and MPLS OAM
- Security Considerations
- What About G-MPLS?
- Summary
Metro Ethernet: Emerging Multiservice Access Opportunity

- Storage Hosting
- Videoconferencing
- Hosted Telephony
- Directory Services
- Business Continuance
- Web Hosting
- Mobile Access
- Secure E-Mail
- Unified Messaging

SP Metro Ethernet Network

- Multitenant Unit (MTU) Basement Access Device
- Residential CPE
- Remote Office 1
- Remote Office 2
- Remote Worker

- Regional Headquarters

- Internet
- PSTN

- 100 Mbps Ethernet
- 10 Mbps Ethernet

- Ethernet, SONET/SDH, RPR, DWDM/CWDM, MPLS/IP

- Ethernet-Connected Branch

- Web Hosting
- Hosted Telephony
- Directory Services
- Business Continuance
- Mobile Access
- Secure E-Mail
- Unified Messaging

- Metro Ethernet: Emerging Multiservice Access Opportunity
Delivers Ethernet-based multipoint L2 VPN service
Enhances L2 VPN scalability (geographic sites & no. of customers)
Leverages existing SP MPLS Core
Supports operational speeds of GB to 10 GB
On track for IETF standardization: Draft Lasserre-Kompella
Uses familiar Ethernet user network interface
Virtual Private LAN Services (VPLS)

- VPLS defines an architecture that delivers Ethernet Multipoint Services (EMS) over an MPLS network
- VPLS operation emulates an IEEE Ethernet bridge
- Two VPLS drafts in existence
 - Draft-ietf-l2vpn-vpls-ldp-01
 - draft-ietf-l2vpn-vpls-bgp-01
VPLS & H-VPLS

VPLS

- VPLS Direct Attachment
 - Single Flat Hierarchy
 - MPLS to the Edge

H-VPLS

- H-VPLS
 - Two Tier Hierarchy
 - MPLS or Ethernet Edge
 - MPLS Core

192.168.11.12/24

192.168.11.2/24

192.168.11.11/24

192.168.11.25/24
VPLS Components

Legend
CE - Customer Edge Device
n-PE - network facing-Provider Edge
VSI - Virtual Switch Instance
PW - Pseudo-Wire
Tunnel LSP - Tunnel Label Switch Path that provides PW transport

Directed LDP session between participating PEs
Full Mesh of PWs between VSIs
VPN & VPLS Desirable Characteristics

- Auto-discovery of VPN membership
 Reduces VPN configuration and errors associated with configuration

- Signaling of connections between PE devices associated with a VPN

- Forwarding of frames
 AToM uses Interface based forwarding
 VPLS uses IEEE 802.1q Ethernet Bridging techniques

- Loop prevention
 MPLS Core will use a full mesh of PWs and "split-horizon" forwarding
 H-VPLS edge domain may use IEEE 802.1s Spanning Tree, RPR, or SONET Protection
VPLS: Layer 2 Forwarding Instance Requirements

A Virtual Switch MUST operate like a conventional L2 switch!

Flooding / Forwarding:
- MAC table instances per customer and per customer VLAN (L2-VRF idea) for each PE
- VSI will participate in learning, forwarding process
- Uses Ethernet VC-Type defined in pwe3-control-protocol-xx

Address Learning / Aging:
- Self Learn Source MAC to port associations
- Refresh MAC timers with incoming frames
- New additional MAC TLV to LDP

Loop Prevention:
- Create partial or full-mesh of EoMPLS VCs per VPLS
- Use “split horizon” concepts to prevent loops
- Announce EoMPLS VPLS VC tunnels
VPLS Deployment: SMB Connectivity

- New Layer 2 multipoint service offering
- Enterprise maintains routing and administrative autonomy
- Layer 3 protocol independence
- Full mesh between customer sites
VPLS Deployment: Layer 2 Multipoint Transit Provider

- SP-As PEs appear back to back and packets are forwarded
- No LDP or Route exchange with transit provider
- Provides optimal traffic path to carrier’s PE
Eth Access

Customer Domain

Provider Domain

Operator Domain

MPLS Core

Service Provider

Customer

Ethernet-LMI: Automated config of CE based on EVCs and bw profiles; L2 connectivity mgmt

802.1ag Connectivity Fault Management:
- UsesDomains to contain OAM flows & bound OAM responsibilities
- Provides per EVC connectivity mgmt and fault isolation
- Three types of packets: Continuity Check, L2 Ping, L2 Traceroute

MPLS OAM: VCCV, LSP Ping/Traceroute

Cisco driving standards

ITU-T SG 13 and SG 15:
- Ethernet Layer Netw Arch (G.8010 SG 15)
- Ethernet OAM Functionality (Y.ethoam SG 13)
- Req ts for OAM in Ethernet based netw (Y.1730 – SG 13)

IEEE:
- 802.3ah – Ethernet in First Mile (Physical OAM)
- 802.1ad – Provider Bridges
- 802.1ag – Connectivity Mgmt
(Per VLAN OAM)

MEF:
- E-LMI

802.3ah Eth in First Mile: When applicable, physical connectivity mgmt betw devices. Most applicable to “first mile”
Agenda

• Dynamics and Background
• Layer 3: Half-Duplex VRF
• Inter-Provider: Layer 3
• Inter-Provider: Layer 2
• A Word on VPLS
• A Word on Traffic Engineering
• Management Considerations and MPLS OAM
• Security Considerations
• What About G-MPLS?
• Summary
Why Traffic Engineering?

- Congestion in the network due to changing traffic patterns
 - Election news, online trading, major sports events
- Better utilization of available bandwidth
 - Route on the non-shortest path
- Route around failed links/nodes
 - Fast rerouting around failures, transparently to users
 - Like SONET APS (Automatic Protection Switching)
- Build New Services—Virtual leased line services
 - VoIP Toll-Bypass applications, point-to-point bandwidth guarantees
- Capacity planning
 - TE improves aggregate availability of the network
Background – Why Have MPLS-TE?

- IP networks route based only on destination (route)
- ATM/FR networks switch based on both source and destination (PVC, etc)
- Some very large IP networks were built on ATM or FR to take advantage of src/dst routing
- Overlay networks inherently hinder scaling (see “The Fish Problem”)
- MPLS-TE lets you do src/dst routing while removing the major scaling limitation of overlay networks
- MPLS-TE has since evolved to do things other than bandwidth optimization
Traffic Engineering services

- Traffic engineering offers the carrier mechanisms to optimise their infrastructure.
 - Distributing traffic
 - Pre-built back-up paths
 - Traffic separation over different TE paths
- Solution Examples
 - Basic Traffic engineering
 - Diffserv aware TE
 - TE optimisation tools
 - FRR using TE
MPLS Traffic Engineering in Core

- MPLS TE Tunnels MAY be used to distribute aggregate load via Constraint Based Routing
- avoid congestion
- in this example, routing PE1→PE2 traffic (80Mb/s) and PE1→PE3 traffic (90Mb/s) on separate path in the core avoids congestion

RFC2702 Requirements for MPLS Traffic Engineering
RFC3209 RSVP extensions for LSP Tunnels
InterAS TE

TE Tunnel spanning multiple Autonomous Systems
Allows bandwidth reservations to span multiple domains

draft-zhang-mpls-interas-te-req-xx, draft-vasseur-inter-as-te-xx
draft-vasseur-mpls-loose-path-reopt-xx, draft-vasseur-mpls-nodeid-subobject-xx
Diff-Serv-aware Traffic Engineering (DS-TE) in Core

- MPLS DS-TE Tunnels MAY be used to carry separately different classes of service
 - canonical example is separate tunnels for Voice and for Data
 - facilitates strict enforcement of different QoS objectives for different classes
 WITHOUT over-engineering
 - per class CAC (eg. route Voice tunnels taking into account the EF queue capacity – and not just the link capacity)
 - per class C-SPF (eg. Use a “hop/Bw based metric” for data tunnels and a “delay-based metric” for voice tunnels)
Diff-Serv-aware Traffic Engineering (DS-TE) in Core

RFC3564 Requirements for Diff-Serv-aware MPLS Traffic Engineering
draft-ietf-tewg-diff-teproto-xx
draft-ietf-tewg-diff-terussian-xx
draft-ietf-tewg-diff-temam-xx

Path Computation Element (PCE) WG Now.
The PCE Working Group is chartered to specify a Path Computation Element(PCE) based architecture for the computation of paths for MPLS and GMPLSTraffic Engineering LSPs
Applicability of Core QoS mechanisms

What should be deployed: ???
- Nothing
- MPLS TE
- MPLS Diff-Serv
- MPLS TE + MPLS Diff-Serv
- Diff-Serv-aware TE
Applicability of Core QoS mechanisms

Service Differentiation (increase revenue)

What should be deployed: ????
- Nothing
- MPLS TE
- MPLS Diff-Serv
- MPLS TE + MPLS Diff-Serv
- Diff-Serv-aware TE

Resource Optimisation (reduce spending)
Applicability of Core QoS mechanisms

- No need for differentiation in Core (Best Effort in Core is good enough for all traffic)
- No need for optimisation (sufficient resources on all links)

→ Deploy NOTHING
Applicability of Core QoS mechanisms

- Need for differentiation in Core
 (Best Effort in Core is not good enough for voice)
- No need for optimisation
 (sufficient resources on all links)

→ Deploy Diff-Serv
Applicability of Core QoS mechanisms

Service Differentiation

- No Need for differentiation in Core
 (Best Effort in Core is good enough for all traffic)
- Need for optimisation
 (delay deployment of additional links)

→ Deploy TE
Applicability of Core QoS mechanisms

- Need for differentiation in Core (Best Effort in Core is not good enough for Voice)
- Need for optimisation (delay deployment of additional links)

→ Deploy TE and Diff-Serv

Service Differentiation

Resource Optimisation

TE + Diff-Serv
Applicability of Core QoS mechanisms

- Need for very strong differentiation in Core (Guaranteed Bandwidth services)
- Need for fine optimisation (delay deployment of additional links)

→ Deploy DS-TE and Diff-Serv
Applicability of Core QoS mechanisms

Higher Quality Service for end-user

Operational Complexity

Service Differentiation

Lower Capital Costs for operator → cheaper service for end-user

Optimisation

Diff-Serv

TE + Diff-Serv

DS-TE + Diff-Serv

TE

Nothing
Agenda

• Dynamics and Background
• Layer 3: Half-Duplex VRF
• Inter-Provider: Layer 3
• Inter-Provider: Layer 2
• A Word on VPLS
• A Word on Traffic Engineering
• Management Considerations and MPLS OAM
• Security Considerations
• What About G-MPLS?
• Summary
Where does MPLS OAM fit

- MPLS OAM mechanisms applicable between Ingress and Egress Provider Edges;
- Label Switched Path (LSP) created by Control protocols such as Label Distribution Protocol and/or RSVP-TE
MPLS LSP Ping/Traceroute

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Solution</th>
<th>Applications</th>
<th>IETF Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Detect MPLS traffic black holes or misrouting</td>
<td>• MPLS LSP Ping (ICMP) for connectivity checks</td>
<td>• IPv4 LDP prefix, VPNv4 prefix</td>
<td>• Draft-ietf-mpls-lsp-ping-06.txt</td>
</tr>
<tr>
<td>• Isolate MPLS faults</td>
<td>• MPLS LSP Traceroute for hop-by-hop fault localization</td>
<td>• TE tunnel</td>
<td></td>
</tr>
<tr>
<td>• Verify data plane against the control plane</td>
<td>• MPLS LSP Traceroute for path tracing</td>
<td>• MPLS PE, P connectivity for MPLS transport, MPLS VPN, MPLS TE applications</td>
<td></td>
</tr>
<tr>
<td>• Detect MTU of MPLS LSP paths</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MPLS AToM Virtual Circuit Connection Verification (VCCV)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Solution</th>
<th>Applications</th>
<th>IETF Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Ability to provide end-to-end fault detection and diagnostics for an emulated pseudowire service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- One tunnel can serve many pseudowires.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- MPLS LSP ping is sufficient to monitor the PSN tunnel (PE-PE connectivity), but not VCs inside of tunnel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- AToM VCCV allows sending control packets in band of an AToM pseudowire. Two components:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Signaled component to communicate VCCV capabilities as part of VC label</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Switching component to cause the AToM VC payload to be treated as a control packet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Type 1: uses Protocol ID of AToM Control word</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Type 2: use MPLS router alert label</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Layer 2 transport over MPLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- FRoMPLS, ATMoMPLS, EoMPLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Draft-ietf-pwe3-vccv-xx.txt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attributes of BFD

* Protocol Independence
* Media Independence
* Fast failure detection

 Light Weight, Fixed Length; simple to parse

* Forwarding plane liveliness

 E.g., Link may be up but forwarding engine may be down or an entry may be incorrectly programmed.

 * No discovery mechanism in BFD

 Applications bootstrap a BFD session

 * Direct physical links
 * Multi-hop routed paths
 * Virtual circuits, Tunnels
 * MPLS LSPs
 * Bi/uni-directional links
MPLS BFD Vs. LSP Ping

<table>
<thead>
<tr>
<th>Method</th>
<th>Data Plane Failure Detection</th>
<th>Control Plane Consistency</th>
<th>Protocol Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSP Ping</td>
<td>YES</td>
<td>YES</td>
<td>Higher than BFD</td>
</tr>
<tr>
<td>MPLS-BFD</td>
<td>YES</td>
<td>NO</td>
<td>Low</td>
</tr>
</tbody>
</table>

MPLS-BFD can complement LSP Ping to detect a data plane failure in the forwarding path of a MPLS LSP

Supported FECs:
- RSVP IPv4/IPv6 Session
- LDP IPv4/IPv6 prefix
- VPN IPv4/IPv6 prefix
- Layer 2 VPN
- Layer 2 Circuit ID
VCCV BFD Vs. VCCV Ping

<table>
<thead>
<tr>
<th>Method</th>
<th>Data Plane Failure Detection</th>
<th>Control Plane Consistency</th>
<th>Protocol Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCCV Ping</td>
<td>YES</td>
<td>YES</td>
<td>Higher than BFD</td>
</tr>
<tr>
<td>VCCV-BFD</td>
<td>YES</td>
<td>NO</td>
<td>Low</td>
</tr>
</tbody>
</table>

VCCV-BFD can complement VCCV-LSP Ping to detect a data plane failure in the forwarding path of a PW.

VCCV-BFD works over MPLS or IP networks; Multiple PSN Tunnel Type MPLS, IPSEC, L2TP, GRE, etc.
Agenda

- Dynamics and Background
- Layer 3: Half-Duplex VRF
- Inter-Provider: Layer 3
- Inter-Provider: Layer 2
- A Word on VPLS
- A Word on Traffic Engineering
- Management Considerations and MPLS OAM
- Security Considerations
- What About G-MPLS?
- Summary
Three Pillars of Security

security

Architecture / Algorithm

Implementation

Operation

Break one, and all security is gone!
What Kind of Threats?

• Threats from Outside the Backbone
 From VPN customers
 From the Internet

• Threats from Inside the Backbone
 SP misconfigurations (error or deliberate)
 Hacker “on the line” in the core

• Threats that are independent of MPLS
 Customer network security

Reference model for best practice deployments
Why is MPLS Security Important?

- Customer buys “Internet Service”:
 Packets from SP are not trusted
 → Perception: Need for firewalls, etc.

- Customer buys a “VPN Service”:
 Packets from SP are trusted
 → Perception: No further security required

SP Must Ensure Secure MPLS Operations
Protecting an MPLS/VPN Core—Overview

1. Don’t let packets into (!) the core
 No way to attack core, except through routing, thus:

2. Secure the routing protocol
 Neighbor authentication, maximum routes, dampening, ...

3. Design for transit traffic
 QoS to give VPN priority over Internet
 Choose correct router for bandwidth
 Separate PEs where necessary

4. Operate Securely

Still “Open”: Routing Protocol

Only Attack Vector: Transit Traffic

Now Only Insider Attacks Possible

Avoid Insider Attacks
Best Practice Security Overview (1)

- Secure devices (PE, P): They are trusted!
- Core (PE+P): Secure with ACLs on all interfaces
 Ideal: deny ip any <core-networks>
- Static PE-CE routing where possible
- If routing: Use authentication (MD5)
- Separation of CE-PE links where possible
 (Internet / VPN)
- LDP authentication (MD5)
- VRF: Define maximum number of routes

Note: Overall security depends on weakest link!
PE-CE Routing Security

In order of security preference:

1. **Static**: If no dynamic routing required (no security implications)
2. **BGP**: For redundancy and dynamic updates (many security features)
3. **IGPs**: If BGP not supported (limited security features)
Securing the MPLS Core

MPLS core

BGP peering with MD5 authentic.

LDP with MD5

ACL and secure routing
Use IPsec if you need:

- Encryption of traffic
- Direct authentication of CEs
- Integrity of traffic
- Replay detection

Or: If you don’t want to trust your ISP for traffic separation!

Maybe more important than encryption?
End-to-End Security with IPsec

- Encryption: Data invisible on core
- Authentication: Only known CEs
- Integrity: Data not changed in transit
Where to Apply IPSec

- **Application:** VPN Security
 - IPSec CE-CE
 - Application: Special Cases (see later)
 - Application: Remote Access into VPN
Where to do IPsec

1. CE to CE
 - SP not involved (unless manages CEs)
 - MPLS network only sees IPsec traffic
 - Very secure

2. PE to PE
 - Does not prevent sniffing access line
 - Not very secure for the customer
 - There are some specific applications for this (US ILECs)
 - Mixtures
 - Need to trust SP
 - Mostly for access into VPN
Applications of PE-PE IPSec

- If core is not pure MPLS, but IP based
 Standard 2547bis requires MPLS core, PE-PE IPSec does not
 Alternative: MPLS in IP/GRE/L2TPv3, but with PE-PE IPSec spoofing impossible

- Protect against misbehaving transit nodes
- Protection against sniffing on core lines
- Protection of pseudowire construct in Inter-AS
Non-Application: Customer Security

Hacker wants to ... IPSec IPSec

CE-CE PE-PE

Protects Fully Protects Partially

Protects Fully Protects Partially

Protects Fully Doesn’t Protect

Doesn’t Protect Doesn’t Protect

... read VPN traffic

... insert traffic into VPN

... join a VPN

... DoS a VPN / the core
MPLS doesn’t provide:

- Protection against mis-configurations in the core
- Protection against attacks from within the core
- Confidentiality, authentication, integrity, anti-replay
- Use IPsec if required
- Customer network security
Agenda

- Dynamics and Background
- Layer 3: Half-Duplex VRF
- Inter-Provider: Layer 3
- Inter-Provider: Layer 2
- A Word on VPLS
- A Word on Traffic Engineering
- Management Considerations and MPLS OAM
- Security Considerations
- What About G-MPLS?
- Summary
Legacy Data Reference Architecture Today
Separate Layers

CPE ➔ Aggregation ➔ Distribution ➔ Core

- SDH/SONET
- ATM

PoP Services

channelised / LL

Fibre Plant

Optical

PSTN

Internet
What is Happening in Core?

- Core bandwidth is increasing
 - Broadband based
 - New Business services
- Slot count pressure
- 10 Gbps in production in larger PTT networks
- 40 Gbps requirement appearing
- 100 Gbps under discussion!
Data Reference Architecture
Future IP + Optical

- CPE
- Aggregation
- Distribution
- Core

- ATM/FR
- PoP Services
- dWDM
- IP/MPLS
- PSTN
- HFC
- Ethernet / channelised / LL
- PSTN
- Internet
- Optical
- GMPLS
- Multi-Service optical transport
Core Infrastructures Option 1
P-to-P DWDM / Dark Fibre / GE Switches

- Simplest model
- Very high BW connections
 - STM-16c – STM-256c, RPR, GE, 10GE
 - WAN PHY & LAN PHY Long Distance
- Static - Does it matter?
- No layer 1 recovery
 - L3 or FRR
- Cheap and efficient solution
Core Infrastructures Option 2
Overlay without Signalling

- Router connected to optical network
- No signalling interaction
- Limited interaction between Router and optical layer
- Backup at either L1 or L3
- More dynamic / more cost
- Bandwidth capabilities determined by SDH / Optical layer
Core Infrastructures Option 3
Overlay with UNI

- Optical UNI interface between Router and Optical Layer
- Overlay model
- Dynamic bandwidth / BW on demand
 - Initiated from the edge
- Bandwidth capabilities determined by Optical Layer
Core Infrastructures Option 4
Peer Model – GMPLS / G.ASON / …
.... when MPLS started ...

- General-purpose tunneling mechanism
 - carry IP and non-IP payloads
 - uses label switching to forward packets/cells through the network
 - can operate over any data-link layer

- Separate Control Plane from Forwarding Plane
- Effort began 1996 RFCs out 2001
- RFC 3031 MPLS Architecture

IP Routing Protocols
- MPLS Domain - OSPF, ISIS, iBGP
- Outside RIP2, BGP4

Label Distribution Protocols
- LDP, RSVP
MPLS TE emerged...

- Packets no longer need to follow shortest path
- Constraint-based routing
 - LSP tunnel established over set of links and nodes
 - Tunnel meets requested BW and/or policy constraints
- LSP tunnels are unidirectional ptp connections
then came MPλS …

- Extend MPLS TE protocols to control optical cross-connect (OXC)
 - LSRs are like OXC
 - LSPs are like optical connections
 - Reuse IP/MPLS protocols

- Advantages
 - Fast provisioning of optical connections
 - Unified IP/Optical Control Plane
 - draft-awduche-mpls-te-optical-03.txt Q2 2001

MPλS Domain

Control Plane
- IP Routing Protocols
 - OSPF, ISIS

Forwarding Plane
- Label Distribution Protocols
 - LDP, RSVP TE
- MPLS TE
 - RSVP TE

• Extend MPLS TE protocols to control optical cross-connect (OXC)
 - LSRs are like OXC
 - LSPs are like optical connections
 - Reuse IP/MPLS protocols

• Advantages
 - Fast provisioning of optical connections
 - Unified IP/Optical Control Plane
 - draft-awduche-mpls-te-optical-03.txt Q2 2001
... finally Generalized MPLS - GMPLS ...

- GMPLS control plane supports multiple switching and forwarding planes
- Introduces new functions to accommodate circuit-oriented optical network regimes

GMPLS = MPLS + MPLS + N
- where N is MPLS control of new switching planes
- draft-ietf-ccamp-gmpls-architecture-07.txt

GMPLS Control Plane
- IP Routing Protocols With Extensions OSPF, ISIS
- MPLS TE RSVP TE
- Label Distribution Protocols CR LDP, RSVP TE

Forwarding Plane
- SONET SDH NE
- OXC
- OTN
- GMPLS Domain

Routing Protocols
- OSPF, ISIS
- Label Distribution Protocols
- CR LDP, RSVP TE

• GMPLS control plane supports multiple switching and forwarding planes
• Introduces new functions to accommodate circuit-oriented optical network regimes
O-UNI Multi-Service Network Applications

Service Provider offering dynamic optical paths for myriad of optical client equipment and networks

Offer Bandwidth On Demand, OVPN, and new Transport classes of services
Research & Education Network Tiers

<table>
<thead>
<tr>
<th>LEADERS</th>
<th>NETWORK TYPE</th>
<th>CAPABILITIES/USERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web100 NLR</td>
<td>Research</td>
<td>Experimental environments for network researchers</td>
</tr>
<tr>
<td>Teragrid WIDE CALREN NLR</td>
<td>Experimental Networks</td>
<td>Next generation architecture and applications for research community</td>
</tr>
<tr>
<td>I2-Abilene, SurfNet 5 CALREN</td>
<td>Advanced Education Networks</td>
<td>Advanced services for education</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISPs</th>
<th>Commodity Internet</th>
<th>General Use</th>
</tr>
</thead>
</table>

© 2003 Cisco Systems, Inc. All rights reserved.
Agenda

- Dynamics and Background
- Layer 3: Half-Duplex VRF
- Inter-Provider: Layer 3
- Inter-Provider: Layer 2
- A Word on VPLS
- A Word on Traffic Engineering
- Management Considerations and MPLS OAM
- Security Considerations
- What About G-MPLS?
- Summary
MPLS: The Key Technology for the delivery of L2 & L3 Services

IP+ATM: MPLS Brings IP and ATM Together
- eliminates IP “over” ATM overhead and complexity
- one network for Internet, Business IP VPNs, and transport

Network-Based VPNs with MPLS:
- a Foundation for Value Added Service Delivery
- flexible user and service grouping (biz-to-biz)
- flexibility of IP and the QoS and privacy of ATM
- enables application and content hosting inside each VPN
- transport independent
- low provisioning costs enable affordable managed services
MPLS: The Key Technology for the delivery of L2 & L3 Services

MPLS Traffic Engineering
- Provides Routing on diverse paths to avoid congestion
- Better utilization of the network
- Better availability using Protection Solution (FRR)

Guaranteed Bandwidth Services
- Combine MPLS Traffic Engineering and QoS
- Deliver Point-to-point bandwidth guaranteed pipes
- Leverage the capability of Traffic Engineering
- Build Solution like Virtual leased line and Toll Trunking
MPLS: The Key Technology for the delivery of L3 Services

IP+Optical Integration
- eliminates IP “over” Optical Complexity
- Uses MPLS as a control Plane for setting up lightpaths (wavelengths)
- one control plane for Internet, Business IP VPNs, and optical transport

Any Transport over MPLS
- Transport ATM, FR, Ethernet, PPP over MPLS
- Provide Services to existing installed base
- Protect Investment in the installed gear
- Leverage capabilities of the packet core
- Combine with other packet based services such as MPLS VPNs
Questions?