P2P Optimized Traffic Control

Riad Hartani & Joe Neil
Caspian Networks
Rapid evolution of P2P applications, significant impact on network architectures and economics
Daily Traffic Volumes By Traffic Type

Approx 80% of daily traffic is Fileshare

Measured on a peering link with primarily residential traffic
P2P Problem: where it surfaces

1. Congested Link in Core or Access Network – Hot Spot

2. Congestion at Peering Interface
 - >90% P2P traffic goes off-net

3. Congestion at undersea links (expensive and cannot throw b/w at the problem)
P2P Changing Network Engineering Paradigm

Double-Humped Curve

More inbound than outbound traffic

Near 100% outbound utilization

More evening activity

P2P results in almost continuous, almost synchronous traffic loads ...

Changes network design and provisioning assumptions
Impact of P2P Traffic

Measured on a peering link with primarily residential traffic
78% Known File Sharing Traffic
P2P: Current Solutions

» Approach
- Protect against P2P applications masquerading as http traffic (port 80)
- Deal with higher layer (application) inspection and classification
- Typically targeted for network edges / onramps partly because these functions are available on lower speed interfaces only due to performance requirements of these solutions

» Challenges:
- Encryption – making it impossible to identify application type
- Performance – current offerings are “flow-based” but operate at lower speed interfaces
- Complexity (rules change daily with application changes). Operationally challenging.
- Not efficient under class congestion – random discard mechanisms only
- Extra box(s) in network
Managing P2P Use – different approaches

» Ignore the problem

» Management by written or other policy

» Throw Bandwidth at it
 ▪ More b/w you give, more it takes!!!

» P2P Traffic Control
 ▪ Port Blocking
 ▪ Rate limiting
 ▪ Bandwidth quotas
 ▪ QoS

1. Identify P2P Traffic
2. Manage P2P Traffic

2 Step Process
The Issue

Unknown Traffic
- Browsing
- Streaming
- Voice/Video over IP
- Some P2P (skype, small transfers, etc.)
- Small web downloads
- Large FTP Transfers
- Some P2P (large transfers)

All Traffic Treated Equally Under Congestion
Poor QoE for Interactive Applications
Currently too costly to maintain adequate QoE

Conventional routers cannot identify / classify P2P traffic.
Appliance approach using signatures has operational, accuracy and cost issues
Conventional Router
1. Route each packet
2. Switch to output
3. Class-based QoS

Flow-based Router
1. Hash for flow identification
 - 2M flows/s and 6M flows per 10 Gig
 - Flexible definition of flows: IP flows, PWoMPLS flows, IPoMPLS flows
2. Create “soft” state or look up
 - Route, switch, filters, stats
3. Per-flow QoS behavior
 - Leverage flow state for advanced QoS
 - Shape, police, CAC, congestion control
Flow Routing: QoS and Network Benefits

» Customized congestion control schemes

» Flexible connection admission control (CAC)

» Advanced shaping/policing schemes

» Guaranteeing services → network scalability

» Next evolutionary steps towards routers with integrated traffic control capabilities

State → Intelligence → Improved nodal behavior → Enhanced network services at lower cost
Customized Congestion Control Schemes

- Providers can select & enforce explicit congestion control policies
 (responsive vs. unresponsive, high rate vs. low rate, short lived vs. long lived)
- Flow routers leverage state information to characterize traffic flows
 - Can enforce specified congestion control policies
- Providers can decide on different congestion based their requirements

Examples
- Guarantee (weighted) fairness between TCP flows
- Congestion control based on “flow abusiveness concept”
- Ensure quasi zero-loss for certain types of traffic (e.g. TDM, emulated circuit)

Flow-based congestion control schemes allow
- Differentiation between service providers
- Definition of new services
Identifying P2P flows

<table>
<thead>
<tr>
<th>Service</th>
<th>Duration</th>
<th>Average Rate</th>
<th>Bytecount</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>Short</td>
<td>High</td>
<td>Low to High</td>
</tr>
<tr>
<td>VPN</td>
<td>Long</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Games</td>
<td>Long</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Streaming</td>
<td>Long</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Telnet</td>
<td>Long</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Fileshare / P2P</td>
<td>Long</td>
<td>Medium-High</td>
<td>High</td>
</tr>
</tbody>
</table>

Anomaly based detection approach of P2P flows
Based on an exhaustive characterization of P2P traffic
Managing P2P Traffic

• Multiple dimensions used to identify P2P traffic
 - Traffic rates, flow lengths, packet sizes
 - Flows per user & traffic per flow
• Provides customized control behavior under congestion
• Leads to optimized ROI for costly peering links
Conclusions

» P2P traffic to grow, changing network and traffic engineering assumptions

» Flow-based routing enhances IP routers nodal behavior, based on a dynamic identification and policy based action schemes

» Flow based routing allows optimized resources management, significantly improve service providers economics

» P2P applications and impact on services and network architectures: threats and opportunities!