GLIF

Akira Kato

Univ. of Tokyo/WIDE Project
kato@wide.ad.jp
Dark Fiber based Networks

☆ National Lambda Rail is operational in U.S.
 - http://www.nlr.net/
 - Dark Fibers from Level3
 - LAX-SFO-SEA-DEN-ORD-PIT-NYC-WAS
 - Southern route is being installed
 - Cisco ONS-15808 DWDM
 - Upto 30 10GE LANPHYS
 - Light Paths can be configured statically

☆ SURFnet operates a nation-wide DF based network
 - http://www.surfnet.nl/
 - Light Paths can be configured statically
Non-DF based Networks

☆ JGN2 in Japan
 • OC-192 or 8*GbE for Long-Haul
 • Some links are 10GE LANPHY based on DF
 • Layer-2 service rather than Light Paths

☆ CA*net4 in Canada
 • Nation-wide Multiple OC-192
 • Only fraction of BW is used for commodity
 • Light Paths can be configured through a GUI
 — UCLP
OC-48/OC-192 class International links

☆ Some are operated as a regular Layer-3 links
 • TransPAC/APAN, SINET, etc
☆ Others are operated as "lambda"
 • some of the bandwidth is reserved for a layer-3 link
 • SURFnet
 — OC-192 between Amsterdam and Chicago
 • IEEAF Atlantic
 — OC-192 between New York and Amsterdam
 • IEEAF Pacific
 — OC-192 between Seattle and Tokyo
 • JGN2
 — OC-192 between Tokyo and Chicago
A Light Path

☆ There is no formal definition yet
 • Generally point-to-point connection w/ QoS enforced

☆ Many levels of definitions can be possible
 • A MPLS tunnel/VPN w/ QoS
 • VLANs
 • ATM PVC w/ CBR or ABR
 • SONET/SDH
 • GbE/10GE encoded on SONET/SDH

☆ Pure Light Path might have
 • No jitter, No packet loss (there may be bit errors)

☆ Layer-2 Light Path
 • Bandwidth guaranteed, some jitter
 • Jumbo frame enabled
 • Transparent to Layer-3 Protocols
Scientific Data Transfer

☆ **Long-distance transmission**
 - Source: Accelerators, Telescopes, ...
 - Destination: Universities, SuperComputer Centers, ...
 - Transmission often across national borders
 - even several times

☆ **Amount of data is huge**
 - Data sources generate lot of data
 - Precision of analysis depends on the amount of data
 - Semi-realtime transmission is required
 - For duration of "observation" or "experiment"
 - May not occupy the bandwidth in 24x7 basis
Scientific Data Transfer

★ **Number of hosts involved is small**
 - 10 hosts in each side, or even single host

★ **Large bandwidth is required**
 - GbE, OC-48, or 10GE/OC-192
 - 100ms or 200ms RTT delay
 - Bandwidth-Delay product is huge
 - Very difficult to control transmission
 - Most of them require reliable transmission
 - VLBI would be an exception
 - Regular TCP is difficult to accommodate it
 - "fairness" among other TCP sessions
 - Aggressive growth of window necessary
 - Even use of other transport protocol than TCP

★ **Jumbo frames required To reduce the overhead**
 - header, interrupt, etc
Global Lambda Integrated Facility

- http://www.glif.is/
- A virtual organization
 - No formal by-law
- Annual invitation-only meetings
 - Aug 2004: Reykjavik, IS
 - Sep 2004: Nottingham, UK
 - Sep 2005: San Diego, US
- Intermediate meeting for Tech WG
 - Feb 2005: Salt Lake City, US
Global Lambda Integrated Facility
Global Lambda Integrated Facility
Sep 2004 : Tokyo -- Geneva OC-192

☆ Multi-national collaboration : JP, US, CA, NL, CH

- 11,000mi/18,000km long
- L2 device: NI40G in T-LEX and CERN
- First long-distance 10GE WANPHY
- The light path existed for two weeks
Data Reservoir tried to fill the pipe
- Prof. Hiraki from the Univ. of Tokyo
- http://data-reservoir.adm.s.u-tokyo.ac.jp/

Each box is with a Chelsio T110 10GE NIC
- TCP was off-loaded to the NIC
- 1500 byte standard frames used

Two different transfer modes tried
- A pair of Opteron boxes
 - Each with a Chelsio T110 10GE NIC
 - Single TCP
 - Memory to memory transfer
- A pair of 9 Xeon boxes
 - Disk to disk transfer
 - Many (36) TCP sessions
 - iSCSI over TCP
Sep 2004 : Tokyo -- Geneva OC-192

☆ **Circuit setup**
 - Configuration has been done in a day

☆ **Packet loss**
 - Divide-and-conquer loopback test
 - Time consuming process
 - SURFnet OC-192 card in Chicago was broken
 - Required another day to replace it
 - Optical attenuator at ONS-15454 OC-192 LR card
 - Special SC connector (with a shutter)
 - Attenuator should be at the other end of patch
 - Clock source issue
 - IEEAF OC-192 doesn’t provide clock
 - It provides just a clear channel
 - T-LEX ONS-15454 got a clock from OC-12
Sep 2004 : Tokyo -- Geneva OC-192

☆ Email was used for communication
 • Good
 — Asynchronous, Recorded
 — Photo, drawing, URL
 • Bad
 — Non-realtime, need a separate trigger
 — SPAM protection can delay the delivery
 — Difficult to tell "subtle" things

☆ May need a sophisticated method
 • International Trouble Ticketing System?
Providing access to boxes helped a lot
- Mutual R/O access provided
 - UW and T-LEX ONS15454’s
- DR got access on NI40G’s in both ends
 - Realtime reading of error counters useful

Making it to public may involve a security issue
- May need to establish a "Trustworth" community
- Access to every gear en-route should be provided
- Abilene’s Core Node Proxy is a wonderful example
- Device independent access possible?
 - ONS-15454, OME6500, HDXc, Foundry, Cisco
 - Force10, Procket, Juniper, Hitachi/Alaxala, Fujitsu
Results

- Circuit was configured w/o packet loss
- 18,000km measured by "known" points
- Single TCP memory to memory
- 7.5Gbps was marked
- Disk to disk transfer
- 9Gbps was marked
DR tried Bandwidth Challenge

• AMS--CHI--TYO--CHI--PIT : 31,248km
• Marked 7.21Gbps Single-TCP memory to memory
• LSR was not fully approved
 – LSR measures by distance of L3 devices
 – AMS--TYO--CHI--PIT : 20,123km

DR’s retry in Christmas

• TYO--CHI--AMS--NYC--CHI--TYO : 30,000km
 – Actual distance was 33,979km
 – But cropped to 30,000km due to a LSR rule
• 7.21Gbps was marked, yielding 216,300 Tbps m/sec
• Updated LSR
 – Single-TCP class
 – Multiple-TCP class
☆ JGN2 : Japan Gigabit Network version2
 - A Nation-wide testbed network
 - Funded by MPHPT
 - Version 1 was ATM based
 - 10GE/GbE based JGN2 launched in Apr 2004
 - http://jgn2.jp/
 - Not all information available
 - Not information available in English
 - (partially unprotected) OC-192 to Chicago

☆ JGN Symposium held twice a year
 - Jan 17-18, 2005 in Osaka
JGN Symposium

☆ Background
• Prof. Smarr from UCSD invited to give a keynote
• He was not make a trip to Japan
• He happened to be in Seattle
• Research Channel at UW get involved
• Trial for remote talk with HDTV
 — Using JGN’s OC-192 circuit to Chicago
• Plan was not discussed in detail by Nov 04

☆ Uncompressed HDTV
• Requires 1.5Gbps bandwidth
• UW’s implementation can stripe it over two GbEs
 — No OC-48 or 10GE is necessary
Intial Plan

- Two independent path for redundancy
 - Chicago route for main uncompressed stream
 - IEEAF route for backup HD/MPEG
A fiber cut happened in Jan10 1742JST
• Due to flooding in Nevada
• LA--Chicago JGN2 OC-192 was unprotected
• The carrier was not able to get there until Jan11
Contingency plan was being discussed

- Use IEEAF circuit for two streams
- Even after fiber restored at Jan13 1420JST
 - To avoid confusion
 - UW was busy for three demonstrations
Prof. Smarr gave presentation in almost perfect
• Audio demux broken in the last minutes in Osaka
• Use the combination of
 – Video from the Uncompressed stream
 – Audio from HD/MPEG
• Lip-Sync was lost, unfortunately

For those who involved to make this successful
• UW, Pacific-Interface, PNWGpop, NLW, StarLight
• TransPAC, APAN, IEEAF, T-LEX, WIDE, JGN2
• NTT Communications, NTT Lab, NTT West
• and more
Control Plane of GLIF

☆ Most of the gear in the middle
 • Configured manually
 • Coordination by meeting required
 • Actual configuration is done in a day or two
 – "wiring" a fiber may be required
 • The configuration lasts for a few days or more

☆ CANARIE developed UCLP
 • User-Controlled Light Path
 • Configuration through a GUI w/ authentication
 • Generate TL1 commands to be uploaded to gear
 • "time-share" in order of an hour possible
 – one app for daytime, another for nighttime
Control Plane of GLIF

- GMPLS is not easy to introduce
- A Light Path may spawn
 - Multiple administration domains
 - Authentication and Authorisation required
 - May skip accounting in this case
 - Multiple vendors gear in multiple layers
 - DWDM, TDM, OXC
 - Encoding interface: GbE into STS-24
 - Layer-2 devices, VLANs
Summary of GLIF

☆ It is working
 • Very static, or PVC-like in other words
 • A light path lasts for hours, days, or even weeks
 • Reconfiguration may need a day or two
 • Control Plane Protocol
 — Email, Phone, or buy a glass of beer
 • JP, US, CA, UK, NL, CH, CZ, KR, TW
 • End-to-end light path was proved useful

☆ Single Lambda was GbE/STS-24
 • Current trends of single lambda is 10GE/STS-192
 • More bandwidth required
 — 3--4 10G between Japan to Seattle in SC2005
 — DR may fill the pipe w/ PCI-X 2.0