cflowd configuration

Daniel W. McRobb

Original: Oct 1998 Last Modified: August 30, 1999

This is the cflowd system configuration guide for cflowd-2-1-a2.

Contents

1 Overview

1.1 Data flow

2 cflowd configuration

2.1 OPTIONS stanza

211
2.1.2
2.1.3
214
2.1.5
2.1.6
2.1.7
2.1.8
219
2.2
221
2.2.2
223
224
225
2.2.6
2.2.7
2.3
23.1
2.3.2
233
234

COLLECTOR stanza

LOGFACILITY (optional)
TCPCOLLECTPORT (optional)
PKTBUFSIZE (optional)
TABLESOCKFILE
FLOWDIR
FLOWFILELEN (optional)
NUMFLOWFILES (optional)
MINLOGMISSED (optional)

CFDATAPORT
LOCALAS (optional)
SNMPCOMM (optional but recommended)
COLLECT

Example.

3 starting cflowd

3.1

starting cflowdmux

3.2 starting cflowd

cflowd logging

cflowd debugging

cfdcollect configuration

6.1 system stanza oL e e e e e e
6.1.1 logFacility e
6.1.2 dataDirectory e
6.1.3 filePrefix L
6.1.4 pidFile e
6.1.5 Example. e

6.2 cflowdstanza
6.2.1 host e
6.2.2 tcpCollectPort L
6.2.3 minPolllnterval L e
6.24 Example. L

Network Service Provider NetFlow Configuration

More Information

Appendix A

9.1 Version 1 flow-export L
9.2 Version 5 flow-export e e e
9.3 Version 8 flow-export e e e e

List of Figures

[y

cflowd data flow L
cflowd data flow detail L
network service provider configurationo L Lo o
version 1 flow-export flow header
version 1 flow-export flow entryo oo L
version 5 flow-export flow header oo oL
version 5 flow-export flow entryo Lo

version 8 flow-export flow header L

© 00 N O Ut ks W N

version 8 flow-export AS aggregation flow entryo

—
jes)

version 8 flow-export protocol/port aggregation flow entry Lo

10
10
10
10
10
10
10
11
11
11
11
11

11

12

12
12
14
14

11 version 8 flow-export prefix aggregation flow entry oo oL 18
12 version 8 flow-export source prefix aggregation flow entryo 18

13 version 8 flow-export destination prefix aggregation flow entry 19

1 Overview

1.1 Data flow

It is useful to understand the flow of data in the cflowd system before configuration. Figure 1 is a diagram
showing a high-level view of the flow of data in the cflowd system.

UDP

cflowd uop

..|I|k|.....li|h..

4

cfdcollect

vV

Slols

ARTS files on disk

Data flow in the cflowd system. Each Cisco sends UDP flow-export
packets to a host running cflowd. cflowd creates tabular summaries
which are picked up by cfdcollect at regular intervals. cfdcollect
stores the tabular data in ARTS files, which can be processed with
the arts++ package.

Figure 1: cflowd data flow

Each Cisco router sends flow-export packets (version 1, version 5 or version 8) to a host running cflowdmux
and cflowd. cflowd creates tabular data from the data in the flow-export packets. cflowd also serves the
tabular data to cfdcollect. cfdcollect will contact each configured instance of cflowd at regular intervals
(configurable) to retrieve tabular data, and will store the data in ARTS files.

A typical configuration inside a provider network would have several workstations in the network running
cflowd, each located in close proximity to the routers from which they’re receiving flow-export data. A
single instance of cfdcollect would be run on a centrally located server with plenty of disk space.

It should be noted that cflowd does not receive flow-export packets directly. A program called cflowdmux
is responsible for handling UDP packets from the Cisco routers, and will put the packets in shared memory
buffers which can be read by cflowd. In addition, cflowd acts a server to local table clients like cfdases, as

well as acting as the server for cfdcollect. A more detailed diagram showing the data flow in the system
is seen in Figure 2.

cflowd system dataflow (inter-process)

table client

shared memory
buffers and access
semaphores named stream

x| =] = ;
S| =| =| sockets for sending
2| 2] 2| datato table clients
cflowdmux
= - table
olo| |2 data
2|3l 8l2 .
ARSI cflowd
olalalalala S|l alo £ —
olalalalala = tabl
=1 =0 =D = =) Q 7 able
? data
EEEE —

UDP sockets for incoming
flow data from Cisco
routers (flow-export)

ey

raw flows

TCP

‘ <4
raw flow client |« cfdcollect

Figure 2: cflowd data flow detail

2 cflowd configuration

cflowd, cflowdmux and the local utilities (cfdases, cfdnets, et. al.) all read configuration information

from cflowd.conf. In a standard installation, cflowd.conf will be located in the /usr/local/arts/etc/
directory.

cflowd.conf contains three types of stanzas: an OPTIONS stanza specifying system-wide configuration
values, CISCOEXPORTER stanzas specifying configuration values for each Cisco from which we’re collecting
data, and COLLECTOR stanzas specifying hosts from which we permit cfdcollect connections.

2.1 OPTIONS stanza

The OPTIONS stanza in cflowd. conf is used to set system-wide configuration values for cflowd, cflowdmux
and local clients. There should be a single OPTIONS stanza in cflowd.conf, and it should be the first
stanza. Following are descriptions of each of the settings in an OPTIONS stanza.

2.1.1 LOGFACILITY (optional)

The LOGFACILITY setting is used to set the syslog facility that will be used by cflowd and cflowdmux for
logging. If unspecified, local6 will be used.

2.1.2 TCPCOLLECTPORT (optional)

The TCPCOLLECTPORT setting is used to set the TCP port on which cflowd will listen for connections
from cfdcollect. Connections to this port are used for downloading tabular data from cflowd and cause
the tabular data in cflowd to be cleared after transmission. Only hosts with a COLLECTOR stanza are
permitted to connect to this port and retrieve data. Normally, a single cfdcollect will be running on a
COLLECTOR host and be the only program to connect to the TCPCOLLECTPORT.

If TCPCOLLECTPORT is unspecified, a default value of 2056 will be used.
2.1.3 PKTBUFSIZE (optional)

cflowdmux uses a 1 megabyte packet buffer by default, split into 2 toggle buffers in a single shared memory
segment. Using the PKTBUFSIZE setting, you may change the default size of the packet buffer shared
memory segment. This option is typically used to increase the size of the packet buffer.

2.1.4 TABLESOCKFILE

The TABLESOCKFILE setting specifies the path to the named stream socket on which cflowd will listen
for local table client connections. cflowd will accept connections from table clients on this socket. Typical
table clients are cfdases, cfdnets, et. al.

2.1.5 FLOWDIR

Specifies the directory in which raw flow files should be stored. This is used when flows is specified in a
CISCOEXPORTER stanza.

2.1.6 FLOWFILELEN (optional)

Specifies the length of raw flow files. cflowd will roll over a raw flow file when it reaches this length. cflowd
will not truncate a raw flow in a flow file, so it typically writes to some length just below the FLOWFILELEN.
If unspecified, a default value of 1048576 (1 megabyte) will be used.

2.1.7 NUMFLOWFILES (optional)

Specifies the number of raw flow files to be user per router. This determines how many raw flow files will be
kept by cflowd per router. If unspecified, a default value of 10 will be used.

2.1.8 MINLOGMISSED (optional)

Specifies the threshold at which cflowd will syslog a message about missed flows. cflowd only does this
when contacted by cfdcollect. If this value is unspecified, a default value of 300 will be used.

2.1.9 Example

Below is an example OPTIONS stanza. We’ve specified local6 as the LOGFACILITY, so cflowd and
cflowdmux will syslog using this facility. We’ve specified a TCPCOLLECTPORT of 2056, so cflowd
will listen for connections from cfdcollect on TCP port 2056. cflowdmux will listen for raw flow
client connections on the named stream socket /usr/local/arts/etc/cflowdmux.socket as specified with
RAWFLOWSOCKFILE. cflowd will listen for connections from table clients on the named stream socket
/usr/local/arts/etc/cflowdtable.socket as specified with TABLESOCKFILE. cflowd will store raw
flow files in the /usr/local/arts/data/cflowd directory if flows are specified in the COLLECT portion
of a CISCOEXPORTER stanza. As specified by FLOWFILELEN, cflowd will roll over a raw flow file when
it reaches 1000000 bytes. 10 flow files will be kept per router, as specified with NUMFLOWFILES. As
specified by MINLOGMISSED, cflowd will syslog a message about missed flows when there are more than
300 flows missed between queries from cfdcollect.

OPTIONS {
LOGFACILITY: local6
TCPCOLLECTPORT: 2056
TABLESOCKFILE: /usr/local/arts/etc/cflowdtable.socket
FLOWDIR: /usr/local/arts/data/cflowd
FLOWFILELEN: 1000000
NUMFLOWFILES: 10
MINLOGMISSED: 300
}

2.2 CISCOEXPORTER stanza

The CISCOEXPORTER stanza is used to specify configuration values for a single Cisco router. There may
be more than one CISCOEXPORTER stanza in cflowd.conf, with each corresponding to a Cisco router
from which we would like to collect data.

2.2.1 HOST

The HOST setting is used to specify the IP address of the Cisco.

2.2.2 ADDRESSES

The ADDRESSES setting is used to specify the IP addresses of interfaces on the Cisco router. It’s possible
for flow-export packets to originate from more than one interface on a Cisco router; the ADDRESSES setting
lets us specify multiple source addresses from which we’ll accept flow-export data for a single Cisco router.

2.2.3 CFDATAPORT

The CFDATAPORT setting is used to specify the UDP port on which cflowdmux should listen for flow-
export packets from the Cisco router. This should match whatever you’ve configured as the flow-export
destination port on the Cisco router.

2.2.4 LOCALAS (optional)

The LOCALAS setting is used to specify the local AS of the Cisco router. This value is used when trying
to fix 0 values in the source and destination AS fields in flows from version 5 flow-export and in the prefix
aggregation flows in version 8 flow-export. If LOCALAS is unspecified, cflowd will not try to fix 0 values
in the source and destination AS fields.

2.2.5 SNMPCOMM (optional but recommended)

SNMPCOMM is used to specify the SNMP (v1) community name to be used when retrieving interface
descriptions and IP addresses from the router (ifDescr and ipAdEntIfIndex). It should be enclosed in single
quotes. Currently we can’t handle a community name that contains a single quote, but this will be fixed
soorn.

2.2.6 COLLECT

The COLLECT setting is used to specify the types of data that should be collected from the flow-export
data for the Cisco router. There are several types of data which can be collected:

e asmatrix - AS matrix (packets and bytes from source ASes to destination ASes)

e netmatrix - net matrix (packets and bytes from source networks to destination networks)

e portmatrix - port matrix (packets and bytes from source ports to destination ports)

e ifmatrix - interface matrix (packets and bytes from input interfaces to output interfaces, by ifIndex)

e protocol - protocol table (packets and bytes per IP protocol)

e nexthop - IP nexthop table (packets and bytes per IP nexthop)

e tos - TOS table (packets and bytes per IP TOS)

e flows - raw flow data

2.2.7 Example

An example CISCOEXPORTER is shown below. It is for a router with an IP address of 204.212.46.1 (the
HOST) that is configured to flow-export to port 2055 (the CFDATAPORT) on the host running cflowd.
We specified two addresses for the Cisco router: 204.212.46.1 and 204.212.45.14. These correspond to the
IP addresses of different interfaces on the Cisco router. We specified a LOCALAS of 195, corresponding to
the local AS of the Cisco router. We used COLLECT to list the types of data which cflowd will collect for
the Cisco router using the flow-export data from the router.

CISCOEXPORTER {

HOST: 204.212.46.1 # IP address of Cisco sending data.

ADDRESSES: { 204.212.46.1, # Addresses of interfaces on Cisco
204.212.45.14 } # sending data.

CFDATAPORT: 2055 # Port on which to listen for data.

SNMPCOMM: ’public’

LOCALAS: 195 # Local AS of Cisco sending data.

COLLECT: { protocol, ifmatrix, portmatrix, netmatrix,

nexthop, asmatrix, tos, flows }

2.3 COLLECTOR stanza

The COLLECTOR stanza is used to hold configuration values for a host running cfdcollect. In a standard
configuration, there will only be one or two of these, since a single cfdcollect host is normally used to
collect data from all instances of cflowd. However, there may be more than one entry (for example, you may
have a hot backup host on which you will run cfdcollect when the primary cfdcollect host is down).

2.3.1 HOST

The HOST setting is used to specify the IP address of the host running cfdcollect.

2.3.2 ADDRESSES

The ADDRESSES setting is used to specify the IP addresses of the host running cfdcollect. cflowd will
permit connections from cfdcollect originating from any of the IP addresses in the list.

2.3.3 AUTH

Currently unused.

2.3.4 Example

Below is an example COLLECTOR stanza. This says that we will allow connections from cfdcollect that
come from 195.83.243.2 or 195.83.241.9, and we will assume that connections from either of these addresses
are from the same host.

COLLECTOR {

HOST: 195.83.243.2 # IP address of host running cfdcollect
ADDRESSES: { 195.83.243.2, 195.83.241.9 } # other addresses of host
AUTH: none

3 starting cflowd

3.1 starting cflowdmux

cflowdmux should be started before cflowd. It can be started with no arguments, in which case it will use a
compiled-in default as the configuration file name (typically /usr/local/arts/etc/cflowd.conf). It will
also accept an explicit configuration file name as the first argument. Examples:

% cflowdmux

would start cflowdmux using the compiled-in default configuration file.

% cflowdmux /etc/cflowd.conf

would start cflowdmux using /etc/cflowd.conf as the configuration file.

3.2 starting cflowd

After starting cflowdmux, you should start cflowd. Like cflowdmux, cflowd will use a compiled-in default
configuration file (typically /usr/local/arts/etc/cflowd.conf) if given no arguments. It will also accept
an explicit configuration file name as the first argument. Examples:

% cflowd
would start cflowd using the compiled-in default configuration file.
% cflowd /etc/cflowd.conf

would start cflowd using /etc/cflowd.conf as the configuration file.

4 cflowd logging

cflowdmux and cflowd use syslog(3) to record errors and runtime status information. As a convention, each
syslog message starts with a capitalized letter in brackets indicating the priority of the message:

code priority description

[A] LOG-ALERT fatal errors

[C] LOGCRIT errors that need attention
[E] LOG_ERR error conditions

[I] LOG.INFO informational messages

5 cflowd debugging

There are a number of things to examine when trying to find a problem with cflowdmux or cflowd.

The first is the syslog messages. In general, error messages will indicate a problem (and should always be
included in requests for assistance, whether directed at the author or the mailing list).

The second is the socket status. On most UNIX systems, the output of netstat -an will show you open
sockets. You should look for open sockets on UDP ports for each unique CFDATAPORT in cflowd.conf.
If you do not find an open socket for one of the CFDATAPORT ports, there is a serious problem (and you
should report it to the author). If you see a large receive queue value (on those systems that report the
queue length) for prolonged periods on any of the CFDATAPORT ports, there is a serious problem (which
should be reported to the author). Again using netstat -an, you should look for an open TCP port in the
LISTEN state for the TCPCOLLECTPORT specified in the OPTIONS stanza of cflowd.conf. The lack
of a socket in this state will prevent cfdcollect from working, and is a serious problem which should be
reported to the author.

A third source of information is the status of the shared memory segment and the semaphore set. These
can be seen with ipcs -a on most UNIX systems. You should see a shared memory segment owned by
the user running cflowdmux, and at least 2 processes should be attached (cflowdmux and cflowd). The

shared memory segment should be approximately 2 megabytes in length. You should also see a semaphore
set owned by the user running cflowdmux. The size of the semaphore set should be 2.

A final handy source of information is the output of lsof(8) if you have it on your system. In particular, the
output of 1sof -p PID where PID is the process ID of cflowdmux or cflowd.

6 cfdcollect configuration

cfdcollect uses a simple configuration file, typically named cfdcollect.conf and located in the
/usr/local/arts/etc/ directory. cfdcollect.conf should contain two types of stanzas: a single 'sys-
tem’ stanza specifying system-wide values for cfdcollect, and one or more ’cflowd’ stanzas (one for each
instance of cflowd).

6.1 system stanza

The system stanza is used to set system-wide values for cfdcollect. There should be only one of these in
cfdcollect.conf, and it should be the first stanza. Following are descriptions of each of the variables in
the system stanza.

6.1.1 logFacility

Sets the syslog facility to be used for logging by cfdcollect.

6.1.2 dataDirectory

Sets the top-level directory in which to store ARTS data for each router. cfdcollect actually writes into
subdirectories under dataDirectory for each router, with the subdirectories named by the IP address of
each router (corresponding to the HOST setting for routers in cflowd.conf). For example, if you set
dataDirectory to /usr/local/arts/cflowd/data, the data for router 204.212.46.1 would wind up in the
/usr/local/arts/cflowd/data/204.212.46. 1 directory.

6.1.3 filePrefix

Sets the file prefix to be used when writing ARTS data to files. cfdcollect uses filenames of the form
filePrefiz. YYYYMMDD to store ARTS data. Ther normal filePrefix setting is ’arts’. Continuing with
the example from the last section, data for router 204.212.46.1 for September 23, 1998 would wind up in
/usr/local/arts/cflowd/data/204.212.46.1/arts. 19980923

6.1.4 pidFile

Specifies the full path to the file in which cfdcollect should store its process ID.

6.1.5 Example

An example system stanza is shown below. It tells cfdcollect to syslog with the local6 facility, place data
in the /usr/local/arts/data/cflowd directory, use ’arts’ as the file prefix when creating data files, and to
store its process ID in /usr/local/arts/etc/cfdcollect.pid.

system {

logFacility: local6 # Syslog to local6 facility.
dataDirectory: /usr/local/arts/data/cflowd

filePrefix: arts

pidFile: /usr/local/arts/etc/cfdcollect.pid

6.2 cflowd stanza

The cflowd stanza is used to set configuration variables for an instance of cflowd from which we want
cfdcollect to retrieve data. Following are the descriptions of each of the variables in the cflowd stanza.

6.2.1 host

The host running cflowd. This may be a hostname or an IP address.

6.2.2 tcpCollectPort

Sets the port to which to connect to on the host running cflowd. This is the TCP port on which cflowd is
listening, corresponding to the TCPCOLLECTPORT setting in the OPTIONS stanza of cflowd.conf.

6.2.3 minPollInterval

Sets the minimum interval between connections to cflowd. This is not an exact interval timer, since
cfdcollect processes all cflowd instances with a single thread (serially).

6.2.4 Example

Following is an example cflowd stanza. It tells cfdcollect to contact cflowd on foo.mydomain.net port
2056 every 300 seconds (5 minutes) to retrieve the tabular data from cflowd.

cflowd {
host: foo.mydomain.net
tcpCollectPort: 2056
minPollInterval: 300

3

7 Network Service Provider NetFlow Configuration

In a network service provider environment, there are a number of considerations when configuring flow-
switching and flow-export. Focusing only on those relevant to data collection using cflowd, these are the
critical issues:

e The quantity of data. In a large network, it’s important to reduce (or eliminate) data duplication. An
optimal configuration generates only the data you need.

e The use of the data. The granularity necessary for the typical use (capacity planning and traffic
management) must be available.

Data duplication has more than just performance and disk space penalties; if the possiblity exists that you've
recorded the same traffic more than once in two different places, you often can’t aggregate the traffic data
from those two different places in a meaningful way without resorting to very granular duplication detection.

A typical network service provider wants source to destination traffic information at the AS and network
prefix level (the AS matrix and the net matrix). To obtain this information, they must use version 5
flow-export or use version 8 flow-export and configure the prefix aggregation cache on the routers.

A provider may optionally want the port matrix and the protocol table. The necessary information is
available in version 1, version 5 and version 8 flow-export. In the case of version 8, you need to configure
the protocol/port aggregation cache on the router(s). In all cases, a provider will want the information per
input interface (not aggregated across interfaces on a router) where available.

NetFlow data is input-based. Flows are instantiated as traffic enters the router, not as it exits. When you
configure flow-switching for an interface on a Cisco router, flow data will be recorded for packets received
from the network by the interface (and not for packets received from other interfaces on the router). In other
words, flow data is recorded only in the receive direction per flow-switching interface.

Recording traffic data when the traffic first enters your network is critical to security related activities
(attack backtracking). It’s also important for determining the offered load to your network; it increases your
data integrity (you get data on incoming traffic, possibly above and beyond what your transit facilities will
handle), and it provides greater topological information (the source of your data is closer to the source of
the traffic for which the data was collected).

Another reason to collect data as it enters your network: in IOS images using the prefix cache (not running
any form of CEF), source netmask and source AS lookups frequently return a cache miss and I0S will not
resort to a routing table lookup. The result is frequent zero values in the source AS and source netmask
length fields in version 5 flow-export. The prefix cache is populated by destinations, not sources; if traffic
to the source network is not seen frequently by the router, a prefix cache entry will not exist for the source
network. Hence, asymmetric paths aggravate the zero value problem.

Taking these constraints into account, an optimal configuration for a network service provider usually looks
something like Figure 3. To avoid recording data more than once, enable flow-switching only on interfaces
at the edge of your network (external interfaces). Since you’ll be collecting data as it enters the network,
you’ll also meet the other constraints.

8 More Information

Example configuration files are included in the cflowd package in the etc/ subsdirectory. They’re named

cflowd.conf.example and cfdcollect.conf.example.

9 Appendix A

9.1 Version 1 flow-export
Version 1 flow-export packets contain a flow header followed by a number of flow entries. The number of
flow entries in the packet is in the count field in the flow header.

Unlike version 5 flow-export, version 1 does not have sequence number information, AS numbers of netmask
lengths. It is hence largely irrelevant in a network service provider environment.

Network Service Provider Configuration

b b
bk,
b ik, i albvah.
bk,
. b ol o
.
abieab. alhie.lh. aibiedhs. . ke
A ok
ke
bk
Lo ol b, bl
bk,
. b . b

to other networks

Enable flow-switching on all external interfaces (those
accepting traffic from networks other than your own). external links
Do not enable flow-switching on internal interfaces (those = internal links
inside your backbone).

Figure 3: network service provider configuration

byte 3 byte 2 | byte 1 byte 0

Version 1 Flow Header

version I count

sysUptime

unix seconds

unix nanoseconds

Figure 4: version 1 flow-export flow header

byte 3 byte 2 byte 1 byte 0

Version 1 Flow Entry

source IP address

destination IP address

next hop IP address

input interface index output interface index

packets

bytes

start time of flow

end time of flow

source port destination port

padding IP protocol TOS

padding

padding

Figure 5: version 1 flow-export flow entry

9.2 Version 5 flow-export
Version 5 flow-export packets contain a flow header followed by a number of flow entries. The number of
flow entries in the packet is in the count field in the flow header.

Unlike version 1 flow-export, version 5 flow-export has AS numbers and netmask lengths for the source and
destination.

byte 3 byte 2 | byte 1 byte 0

Version 5 Flow Header

version I count

sysUptime

unix seconds

unix nanoseconds

flow sequence number

engine type engine ID reserved

Figure 6: version 5 flow-export flow header

9.3 Version 8 flow-export

NOTE: version 8 flow-export is only available in 10S 12.0(2)S and 12.0(3)T images.

Version 8 flow-export packets contain aggregate information. These packets are significantly different in
content than packets from other versions of flow-export; they only contain particular information, and are
missing the granularity of other versions of flow-export. The intended benefit is for high-bandwidth situations
in a provider environment where the most interesting information is to be used for capacity planning and
highly granular information is not desired. Version 8 flow-export is more amenable to use in high-speed
infrastructure where other versions of flow-export may be too process and bandwidth intensive to enable.

When using version 8 flow-export, you must configure aggregation caches on the router. A reference document
is available at:

ftp://ftp-eng.cisco.com/ftp/drowell/flow agg.pdf

Each version 8 flow-export packet contains data from a single aggregation cache on the router. There is a
field in the version 8 flow-export header (aggmethod) that indicates the aggregation cache from which the
data was sent. In combination with the agg version), this determines the layout of the data entries in the
packet. Currently cflowd can make effective use of the protocol/port aggregation cache and the prefix cache,
since they contain data needed to build the protocol table, port matrix, net matrix and AS matrix. cflowd
can also use the AS aggregation cache, but this is generally not recommended because it makes it difficult
to resolve 0 entries in the source and destination AS fields. You should also not configure export for both
the AS cache and the prefix cache, since cflowd will use both types of data to populate the same tables,
hence you’ll wind up with data whose counters will be roughly twice as high as the actual traffic. I may
add some heuristics for this in the future, but none are implemented in the current cflowd release. Hnece
my recommendation is to configure flow-export for the prefix cache and the protocol/port cache and don’t
configure flow-export for any of the other caches (AS, source prefix or destination prefix).

NOTE: since there is no interface information present in the protocol/port data, cflowd will place all proto-
col/port flow entries under interface 0. In MIB-II, ifIndex can’t have a value of 0, so this entry is easy for
programs to recognize as not belonging to a particular interface.

NOTE: currently cflowd can recognize the source prefiz flow data but has no tables in which to store it. Hence
the data is not used by cflowd in the current release.

NOTE: currently cflowd can recognize the destination prefiz flow data but has no tables in which to store it.
Hence the data is not used by cflowd in the current release.

byte 3 byte 2 byte 1 byte 0

Version 5 Flow Entry

source IP address

destination IP address

next hop IP address

input interface index output interface index

packets

bytes

start time of flow

end time of flow

source port destination port
pad | Tcptiags IP protocol TOS
source AS destination AS
src netmask length I dst netmask length padding

Figure 7: version 5 flow-export flow entry

byte 3 byte 2 | byte 1 byte 0

Version 8 Flow Header

version I count

sysUptime

unix seconds

unix nanoseconds

flow sequence number

engine type engine ID agg. method agg. version

reserved

Figure 8: version 8 flow-export flow header

byte 3 byte 2 byte 1 byte 0

Version 8 AS Aggregation Flow Entry

flows

packets

bytes

start time of flow

end time of flow

source AS destination AS

source interface destination interface

Figure 9: version 8 flow-export AS aggregation flow entry

byte 3 byte 2 byte 1 byte 0

Version 8 Protocol/Port Aggregation Flow Entry

flows

packets

bytes

start time of flow

end time of flow

protocol pad reserved

source port destination port

Figure 10: version 8 flow-export protocol/port aggregation flow entry

byte 3 byte 2

byte 1 byte 0

Version 8 Prefix Aggregation Flow Entry

flows

packets

bytes

start time of flow

end time of flow

source prefix

destination prefix

src mask bits dst mask bits

reserved

source AS

destination AS

source interface

destination interface

Figure 11: version 8 flow-export prefix aggregation flow entry

byte 3 byte 2

byte 1 byte 0

Version 8 Source Prefix Aggregation Flow Entry

flows

packets

bytes

start time of flow

end time of flow

source prefix

src mask bits

pad

source AS

source interface

reserved

Figure 12: version 8 flow-export source prefix aggregation flow entry

byte 3 byte 2 byte 1 byte 0

Version 8 Destination Prefix Aggregation Flow Entry

flows

packets

bytes

start time of flow

end time of flow

destination prefix

dst mask bits pad destination AS

destination interface reserved

Figure 13: version 8 flow-export destination prefix aggregation flow entry

