INTER-AUTONOMOUS SYSTEM
MPLS VPN
February 2004
Agenda

• Inter-Autonomous System (Inter-AS) Multiprotocol Label Switching (MPLS) VPN Overview
• Inter-AS Control and Forwarding Planes
• Inter-AS Connectivity Models
• Inter-AS Summary
MPLS VPNs review in one slide

- **P** routers (LSRs) are in the core of the MPLS cloud
- PE routers use MPLS with the core and plain IP with CE routers
- P and PE routers share a common IGP (LS)
- PE router are MP-iBGP fully meshed or use Route-Reflectors
- Route Distinguishers (RD) are used to achieve uniqueness of IP address (RD+IPv4=VPNv4)
- Route Targets are used to export and import routes in a VPN
- Multiple routing tables (VRFs) are used on PEs
 - Each VRF contain customer routes
 - Customer addresses can overlap
 - VPNs are isolated
- MP-BGP is used to propagate these addresses between PE routers
Why Inter-AS?

• Extends MPLS VPN services across geographical boundaries, so Service Providers can support their customer base in geographical locations that do not have POPs

• Enables communication between networks under separate autonomous systems (Service Providers)

• Provides traffic separation and maintain end-to-end privacy while traffic traverses multiple MPLS VPN backbones
Inter-AS Topology Overview

Shared Services for VPNs

AS #100
- PE-ASBR-1
- PE-1
- CE-B1
- VPN-B-1
- CE-R1
- VPN-R-1
- HUBv

AS #200
- PE-ASBR-2
- PE-2
- CE-B1
- VPN-B-2
- CE-3
- VPN-G-2
- CE-4
- VPN-R-3
- Spoke

Internet

Shared Services for VPNs
Inter-AS Functionality

- MPLS VPN providers exchange routes across VRF interfaces
- Each PE-ASBR router treats the other as a CE
- Provider edge routers are gateways used for VPNv4 route exchange
- PE-ASBR to PE-ASBR link may use any supported PE-CE routing protocol
Routing For Each SP AS

- Each AS runs a different IGP and no IGP routing information exchange between the domains
- All routing information exchange between the domains is via Exterior Routing Protocol
- Routing policies may differ between the exchange points
- Customer VPN routes are distributed into VRFs at the ingress PE of the ISP
- Each PE assigns labels for the routes to establish connections
INTER-AS Control and Data Planes
Inter-AS Control Plane

- Establishes EBGP session between the PE-ASBRs
- Distribute IPv4 routes for the VPNs in the form of VPNv4 addresses
- PE-ASBRs re-write Next-hop and labels when a route is distributed to a neighbor
- PE-ASBRs store ALL VPN routes that need to be exchanged
- Routes are in the MP-BGP table but not in any other routing tables
 - PE-ASBRs do not have any VRF
 - MP-eBGP labels are used in LFIB
Inter-AS Route Exchange

Route=VPN Blue Site1
Via:
Static
EBGP
OSPF
EIGRP
RIPv2

Route=VPN Blue Site1
Via:
Static
EBGP
OSPF
EIGRP
RIPv2

CE-B-1 PE1-SP1 ASBR-SP1 ASBR-SP2 PE1-SP2 CE-B-2

IBGP
Route=Site2
Next hop=ASBR-SP2
Label=L'

EBGP
Route=Site2
Next hop=ASBR-SP2
Label=L'

IBGP
Route=Site2
Next hop=PE1-SP2
Label=L'
External MP-BGP for VPNv4 Forwarding Plane
Inter-As Forwarding Plane
Inter-AS Basic Configuration

- Create a loopback address on participating ASBRs
- Setup ASBRs for VPNv4 route distribution
- Setup ASBRs for IPV4 route distribution
- Disable automatic route filtering feature
- Set ASBR as Next-Hop-Self
The Problem: VPN Client Connectivity

VPN Sites attached to different MPLS VPN Service Providers

How to distribute routes between SPs?
The Solution: VPNv4 Distribution in Inter AS

Several options available for distribution of VPNv4 prefix information (we will discuss only 2)
INTER-AS CONNECTIVITY MODELS
Option 1: Back-to-Back VRF Connectivity

- Recommended for fewer VRFs requiring simpler connectivity when ASBRs are directly connected over a physical interface
- ASBRs are directly connected over a physical interface
- Sub-interface per VRF is created and mapped
- Packet is forwarded as an IP packet between the ASBRs
- Each PE-ASBR router treats the other as a CE
- PE-ASBR to PE-ASBR link may use any supported PE-CE routing protocol
- Scalability issues if need to support large numbers of VRFs
Back-to-Back VRF Connectivity

VRF to VRF Connectivity between PE-ASBRs

One logical interface & VRF per VPN client
Back-to-Back VRF Connectivity Control Plane

VRF to VRF Connectivity between PE-ASBRs
Back-to-Back VRF Connectivity Forwarding Plane

VRF to VRF Connectivity between PE-ASBRs
Option 2: External MP-BGP for VPNv4 Prefix Exchange

- Recommended when a larger number of VRFs need to be supported
- ASBRs are directly connected and belong to only couple service providers
- Traffic will be crossing only single hop network
External MP-BGP for VPNv4 Prefix Exchange (Cont.)

- Gateway PE-ASBRs exchange routes directly using BGP
 - External MP-BGP for VPNv4 prefix exchange
 - No LDP or IGP
- MP-BGP session with next-hop set to advertising PE-ASBR
 - Next-hop and labels are rewritten when advertised across the Inter-Provider MP-BGP session
- PE-ASBR stores all VPN routes that need to be exchanged
 - Only within the BGP table (no VRFs)
 - Labels are populated into the LFIB of the PE-ASBR
External MP-BGP for VPNv4

- Receiving Gateway PE-ASBRs may allocate new label if desired
 Controlled by configuration of next-hop-self (default is off)
- Receiving PE-ASBR will automatically create a /32 host route for its PE-ASBR neighbor
 Which must be advertised into receiving IGP if next-hop-self is NOT in operation to maintain the LSP;
- PE-ASBRs need to hold all Inter-AS VPN routes
External MP-BGP for VPNv4

MP-BGP VPNv4 prefix exchange between Gateway PE-ASBRs
External MP-BGP for VPNv4 Control Plane

PE-1

VPN-v4 update:
RD: 1:27:152.12.4.0/24,
NH=PE-1
RT=1:222, Label=(L1)

PE-2

VPN-v4 update:
RD: 1:27:152.12.4.0/24,
NH=PE-ASBR-2
RT=1:222, Label=(L3)

PE-ASBR-1

VPN-v4 update:
RD: 1:27:152.12.4.0/24,
NH=PE-ASBR-1
RT=1:222, Label=(L2)

PE-ASBR-2

VPN-v4 update:
RD: 1:27:152.12.4.0/24,
NH=PE-ASBR-1
RT=1:222, Label=(L2)

CE-2

BGP, OSPF, RIPv2
152.12.4.0/24, NH=CE-2

VPN-B-1

152.12.4.0/24

VPN-B-2

152.12.4.0/24

CE-3

BGP, OSPF, RIPv2
152.12.4.0/24, NH=CE-2
External MP-BGP for VPNv4 Forwarding Plane
Why IPV4 BGP Label Distribution?

- Allows a VPN service provider network to exchange IPv4 routes with MPLS labels
- Use BGP to distribute labels associated with the routes at the same time it distributes the routes

Benefits:
- Eliminate the need for any other Label distribution protocol between the two ASBRs
- Allow a non-VPN core network to act as a transit network for VPN traffic
Summary

Back to Back VRFs

- Scalability is an issue with many VPNs
 - One VRF & logical interface required per VPN client;
 - Gateway PE-ASBR must hold ALL routing information

- PE-ASBR must filter & store VPNv4 prefixes
 - Plus import into VRFs thus increasing MPLS & routing table memory

- No MPLS label switching required between providers
 - Standard IP between gateway PE-ASBRs;
 - No exchange of routes using MP-eBGP;
 - Simple solution, works today but limited in deployment scope

MP-eBGP for Prefix exchange

- Scalability less of an issue when compared to back-to-back VRF connectivity
 - Only one interface required between PE-ASBR routers;
 - No VRF requirement on any PE-ASBR router interfaces

- Automatic Route Filtering must be disabled
 - Hence filtering on RT values essential, and good filtering policy must be applied on EVERY PE-ASBR;
 - Import of routes into VRFs is not required which reduces the memory impact on PE-ASBR routers

- MPLS label switching required between providers
 - Routes exchanged using MP-eBGP;
 - Still simple, more scalable & works today