Metro Ethernet Security
Agenda

• Feature Overview

• Box security
 SNMP, pwd recovery, telnet/consol

• Networking protocols
 IGP, EGP, HSRP, VRRP, Spanning-tree, cdp, ip spoofing

• User protection
 Security between users
Feature overview

Private vlan
Private vlan

To get more efficiency when creating the ip-subnets, there is a need to have large vlans (especially if using real ip addresses)

From a security perspective, it would be best if every user belongs to his own subnet
Private vlan

Access Layer 2

SINGLE SUBNET

PRIVATE VLAN

1 1 1

2 2

3 3 3
Private vlan, limitations

- For security reasons, private VLAN interface learned ARP entries do not age out.
- This is a problem in a DHCP environment

If a customer shuts down his pc it is not possible to assign “his old” ip address to a new customer.

This is however possible to turn off from 12.1.11E

```
MSFC:
dr1.row2.lab(config)# int vlan 310
dr1.row2.lab(config-if)# Description public part of pvlan
dr1.row2.lab(config-if)# no ip pvlan-sticky-arp
```

Feature overview

Private vlan edge
Private vlan edge

- A one box only version of the pvlan feature
- Modes are uplink or user-ports, can’t span over several devices

```plaintext
interface GigabitEthernet0/1
  description "*****uplink *****"
  /* no pvlan edge config needed, all ports that doesn’t have
  port protected configured will automatically be seen as
  uplink if we have port protected on at least one port on the
  switch */

interface FastEthernet0/2
  description "***** clientport *****"
  port protected
```
Pvlan / edge, neighbour communication?

- This is an ISP service, we can’t live with a limitation where two customers connected to the same switch can’t talk to each other!

- Local proxy arp

 Answer on behalf of someone else

 MSFC:
 dr1.ank1.se(config)# interface vlan 30
dr1.ank1.se(config-if)# ip local-proxy-arp
Pvlan / edge, neighbour cont 1

- For local data traffic, between users on the same switch, all data will go via the router

Local proxy arp kicks in, answer with:
Ip 1.1.1.11 has mac 0030.b635.d7d0

Arp for 1.1.1.11
Ip 1.1.1.1
0030.b635.d7d0

6500 running local proxy arp

2950 running port protect

100 Mb switch owned by the customer

Ip 1.1.1.10
0003.478e.73fd

Ip 1.1.1.11
0007.0eb4.20b7
• There is a drawback with this approach

• Same user have two pcs connected to a hub, doing file-transfers between them
Private vlan, why bother?

- Why bother with private vlan / edge if we anyway plan to allow traffic using local proxy arp???
- We have a possibility on switches to filter on L3 even within the same vlan, VACL [vlan access list], even on PVLAN* configurations
Feature overview

VACL [Vlan ACcess List]
VACL, function 1

Within the same vlan
VAACL, function 2

Between different vlans
VACL, function 3

All together
VACL, what to filter

- We are providing a broadband isp, IP service
 Other protocols should be filtered out

- NetBIOS is a security threat, shared disks can be mapped, vulnerabilities can be used

- If customers would like to do gaming over the network, they should be forced to use IP, no IPX
Agenda

• Feature Overview

• Box security
 SNMP, pwd recovery, telnet/consol

• Networking protocols
 IGP, EGP, HSRP, VRRP, Spanning-tree, cdp, ip spoofing

• User protection
 Security between users
Box security

Environmental security
Environmental security

- We have seen occurrences of physical “break in” to get access to the console of the access device.
- This is something we should keep in mind when it comes to SNMP communities, access-lists, enable secret and logging of configuration changes.
Box security

Mac address flooding
MAC Address/CAM Table Review

48 Bit Hexadecimal Number Creates Unique Layer Two Address

1234.5678.9ABC

First 24 Bits = Manufacture Code
Assigned by IEEE

0000.0cXX.XXXX

Second 24 Bits = Specific Interface,
Assigned by Manufacturer

XXXX.XX00.0001

All F’s = Broadcast

FFFF.FFFF.FFFF

- CAM table stands for Content Addressable Memory
- The CAM table stores information such as MAC addresses available on physical ports with their associated VLAN parameters
- CAM tables have a fixed size
Normal CAM Behaviour 1/3

- **MAC A**: Port 1
- **MAC B**: Port 2
- **MAC C**: Port 3

A -> B

B Unknown…

Flood the Frame

I See Traffic to B!
Normal CAM Behaviour 2/3

MAC Port
A 1
B 2
C 3

A Is on Port 1
Learn:
B Is on Port 2
Normal CAM Behaviour 3/3

MAC Port
A 1
B 2
C 3

A → B

MAC A

Port 1

B Is on Port 2

Port 2

MAC B

I Do Not See Traffic to B!

Port 3

MAC C
• Theoretical attack until May 1999

• *macof* tool since May 1999

 About 100 lines of perl from Ian Vitek

 Later ported to C by Dug Song for “dsniff”

• Based on CAM Table’s limited size
CAM Overflow 2/3

Metro Ethernet Security

<table>
<thead>
<tr>
<th>MAC</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>Y</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
</tbody>
</table>

MAC A

X Is on Port 3

MAC B

Y Is on Port 3

MAC C

X->?

Y->?
CAM Overflow 3/3

MAC Port
X 3
Y 3
C 3

Port 1
MAC A
A->B
B Unknown… Flood the Frame

Port 2
MAC B
A->B
I See Traffic to B!

Port 3
MAC C
A->B
MAC Flooding Switches with Macof

[root@attack-lnx dsniff-2.3]# ./macof

b5:cf:65:4b:d5:59 2c:01:12:7d:bd:36 0.0.0.0.4707 > 0.0.0.0.28005: S 106321318:106321318(0) win 512
68:2a:55:6c:1c:1c bb:33:bb:4d:c2:db 0.0.0.0.44367 > 0.0.0.0.60982: S 480589777:480589777(0) win 512
1e:95:26:5e:ab:4f d7:80:6f:2e:aa:89 0.0.0.0.42809 > 0.0.0.0.39934: S 1814866876:1814866876(0) win 512
51:b5:4a:7a:03:b3 70:a9:c3:24:db:2d 0.0.0.0.41274 > 0.0.0.0.31780: S 527694740:527694740(0) win 512
51:75:2e:22:c6:31 91:a1:c1:77:f6:18 0.0.0.0.36396 > 0.0.0.0.15064: S 1297621419:1297621419(0) win 512
7b:fc:69:5b:47:e2 e7:65:66:4c:2b:87 0.0.0.0.45053 > 0.0.0.0.4908: S 976491935:976491935(0) win 512
19:14:72:73:6f:ff 8d:ba:5c:40:be:d5 0.0.0.0.867 > 0.0.0.0.20101: S 287657898:287657898(0) win 512
63:c8:58:03:4e:f8 82:b6:ae:19:0f:e5 0.0.0.0.58843 > 0.0.0.0.40817: S 1693135783:1693135783(0) win 512
33:d7:e0:2a:77:70 48:96:df:20:61:b4 0.0.0.0.26678 > 0.0.0.0.42913: S 1128100617:1128100617(0) win 512
f2:7f:96:6f:db:bd c6:15:b3:21:72:6a 0.0.0.0.53021 > 0.0.0.0.5876: S 570265931:570265931(0) win 512
22:6a:3c:4b:05:7f 1a:78:22:30:90:85 0.0.0.0.58185 > 0.0.0.0.51696: S 1813802199:1813802199(0) win 512
f6:60:da:3d:07:5b 3d:db:16:11:f9:55 0.0.0.0.63763 > 0.0.0.0.63390: S 1108461959:1108461959(0) win 512
bc:fd:c0:17:52:95 8d:c1:76:0d:8f:bb 0.0.0.0.55865 > 0.0.0.0.20361: S 309609994:309609994(0) win 512
bb:cb:c9:48:4c:06:2e 37:12:e8:19:93:4e 0.0.0.0.1618 > 0.0.0.0.9653: S 1580205491:1580205491(0) win 512
e6:23:b5:47:46:e7 78:11:e3:72:05:44 0.0.0.0.18351 > 0.0.0.0.3189: S 217057268:217057268(0) win 512
c9:89:97:4b:62:2a c3:4a:a8:48:64:a4 0.0.0.0.23021 > 0.0.0.0.14891: S 1200820794:1200820794(0) win 512
56:30:ac:0b:d0:ef 1a:11:57:4f:22:68 0.0.0.0.61942 > 0.0.0.0.17591: S 1535090777:1535090777(0) win 512
CAM Table Full!

• Dsniff (macof) can generate 155,000 MAC entries on a switch per minute
• Assuming a perfect hash function, the CAM table will be completely filled after 131,052 (approx. 16,000 x 8) entries
 Since hash isn’t perfect it actually takes 70 seconds to fill the CAM table

```
CAT6506 (enable) sho cam count dynamic
Total Matching CAM Entries = 131052
```

• Once table is full, traffic without a CAM entry floods on the local VLAN, but NOT existing traffic with an existing CAM entry
• This attack will also fill CAM tables of adjacent switches

Snoop Output on Non-SPAN Port 10.1.1.50

```
10.1.1.22 -> (broadcast)  ARP C Who is 10.1.1.1, 10.1.1.1 ?
10.1.1.22 -> (broadcast)  ARP C Who is 10.1.1.19, 10.1.1.19 ?
10.1.1.26 -> 10.1.1.25    ICMP Echo request (ID: 256 Sequence number: 7424) ← OOPS
10.1.1.25 -> 10.1.1.26    ICMP Echo reply (ID: 256 Sequence number: 7424) ← OOPS
```
MAC Flooding Attack Mitigation

- Port security

Capabilities are dependent on the platform

Allows you to specify MAC addresses for each port, or to learn a certain number of MAC addresses per port

Upon detection of an invalid MAC the switch can be configured to block only the offending MAC or just shut down the port

Port security prevents macof from flooding the CAM table

http://cisco.com/univercd/cc/td/doc/product/lan/cat5000/rel_5_4/config/sec_port.htm
Port Security Details

- Beware management burden and performance hit
- Lots of platform specific options besides just “ON/OFF”

CatOS> (enable) set port security mod/ports... [enable | disable] [mac_addr] [age {age_time}] [maximum {num_of_mac}] [shutdown {shutdown_time}] [violation{shutdown | restrict}]

IOS(config-if)# port security [action {shutdown | trap} | max-mac-count addresses]

- MAC Tables do not have unlimited size (platform dependent)
- “Restrict” option may fail under macof load and disable the port, shutdown option is more appropriate

2002 Apr 03 15:40:32 %SECURITY-1-PORTSHUTDOWN:Port 3/21 shutdown due to no space
Box security

VLAN Hopping
Trunk Port Refresher

- Trunk ports have access to all VLANs by default
- Used to route traffic for multiple VLANs across the same physical link (generally used between switches)
- Encapsulation can be 802.1Q or ISL
Cisco Switching Control Protocols

- Used to negotiate trunk status, exchange VLAN information, etc.
- The majority use an IEEE 802.3 w/802.2 SNAP encapsulation
 Includes LLC 0xAAAA03 (SNAP), and the Cisco OUI 0x00000C
 Most use multicast destination addresses
 Usually a variation on 0100.0ccc.cccc
 Source address is derived from a bank of available addresses included in an EPROM on the chassis
 SNAP Protocol Type varies and will be included through the rest of the talk
- CDP and VTP (two common Cisco control protocols) are passed over VLAN 1 only; if VLAN 1 is cleared from a trunk, although no user data is transmitted or received, the switch continues to pass some control protocols on VLAN 1
 For this reason (and the fact that VLAN 1 can not be deleted) don’t use it if you don’t need to

For the Detail-Oriented: 802.3 w/802.2 SNAP

- **DST MAC**: Generally a variant of 0100.0ccc.cccc
- **SRC MAC**: Pulled from a pool in the switch EPROM
- **802.2 LLC fields**
 - DSAP:AA + SSAP:AA + CNTRL:03 = SNAP
- **802.2 SNAP fields**
 - Org Code: 0x00000c (Cisco)
 - Protocol Type: Varies

Dynamic Trunk Protocol (DTP)

- **What is DTP?**
 - Automates ISL/802.1Q trunk configuration
 - Operates between switches
 - Does not operate on routers
 - Not supported on 2900XL or 3500XL

- DTP synchronizes the trunking mode on link ends

- DTP state on ISL/1Q trunking port can be set to “Auto”, “On”, “Off”, “Desirable”, or “Non-Negotiate”

| DST MAC | 0100.0ccc.ccc | SNAP Proto | 0x2004 |
Basic VLAN Hopping Attack

- A station can spoof as a switch with ISL or 802.1Q signaling (DTP signaling is usually required as well, or a rogue DTP speaking switch)
- The station is then member of all VLANs
- Requires a trunking favorable setting on the port
Double Tagged 802.1q VLAN Hopping Attack

- Send double tagged 802.1Q frames
- Switch performs only one level of decapsulation
- Unidirectional traffic only
- Works even if trunk ports are set to off

Note: Only Works if Trunk Has the Same Native VLAN as the Attacker

Attacker

Victim
Double Tagged 802.1Q Ethereal Capture

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000000</td>
<td>1.2.3.9</td>
<td>1.2.3.4</td>
<td>ICMP</td>
<td>Echo (ping) request</td>
</tr>
</tbody>
</table>

Frame: (04 on wire, 03 captured)
- Time delta from previous packet: 0 seconds
- Time relative to first packet: 0 seconds
- Frame Number: 1
- Packet Length: 64 bytes
- Capture Length: 64 bytes

Ethernet II
- Destination: 0000e0:781e:ef1e:8000:0000:0000:0000:0000
- Source: 0000e0:781e:ef1e:8000:0000:0000:0000:0000
- Type: 802.1Q Virtual LAN (0x8100)

802.1Q Virtual LAN
- 000, = Priority: 0
-0 = CF: 0
-0000 0000 0000 = IP: 1
- Type: 802.1Q Virtual LAN (0x8100)

802.1Q Virtual LAN
-0 = 0: 802.1Q
- Type: 802.1Q
- Trailer: 00000000000000000000000000000000

Internet Protocol
- Src Addr: 1.2.3.3 (1.2.3.3)
- Dst Addr: 1.2.3.4 (1.2.3.4)

Version: 4
- Header Length: 20 bytes

Differentiated Services Field: 0x00 (3SCP 0x00; Default: ECF: 0x00)
- Total Length: 28
- Identification: 0x0002

Flags: 0x00
- Fragment offset: 0
- Time to live: 64
- Protocol: ICMP (0x01)
- Header checksum: 0x141f (0x141f)
- Source: 1.2.3.9 (1.2.3.9)
- Destination: 1.2.3.4 (1.2.3.4)

Internet Control Message Protocol

Outer Tag, Attacker VLAN

Inner Tag, Victim VLAN
Disabling Auto-Trunking

- Defaults change depending on switch; always check:
 - From the Cisco docs: “The default mode is dependent on the platform…”

To check from the CLI:

```
CatOS> (enable) set trunk <mod/port> off
or
CatOS> (enable) set port host <mod/port>
IOS(config-if)#switchport mode access

CatOS> (enable) show trunk [mod|mod/port]
IOS# show interface type number switchport
```
Security Best Practices for VLANs and Trunking

- **Always** use a dedicated VLAN ID for all trunk ports
- Disable unused ports and put them in an unused VLAN
- Be paranoid: Do not use VLAN 1 for anything
- Set all user ports to non-trunking (DTP Off)
Box security

Access security
Access security

Metro Ethernet Security

Design your network with isolated management vlan

There is no need to permit unauthorised traffic to the management vlan at all !!!

On the MSFC
Int vlan 999
access-group 101 out
!
Access-list 101 permit tcp host bastion1.domain.com any eq 23
Access-list 101 permit tcp host bastion2.domain.com any eq 23
Access-list 101 permit tcp host snmpsrv1.domain.com any eq 161

Should be combined with telnet access-lists!!!
Access security, cont 1

- **SNMP community, no public / private, acl attached**
- **Use SNMP v3**

```
snmp-server host 195.22.1.3 fault1
snmp-server host 195.22.2.3 fault2
snmp-server community kallekula RO 2
snmp-server community 87gf6v3c RW 3
snmp-server trap-source Loopback0
```

Different community on access devices compared to the rest of the network
Enable secret, aaa authentication and accounting

```
aaa new-model
aaa authentication login default group tacacs+ local
aaa authentication enable default enable
aaa accounting commands 15 default start-stop group tacacs+
```

This will give you a searchable database holding all applied level 15 commands, sorted per user
Access security, cont 3

• Important to be in control over who has made a configuration change and when. Store config history and changes (Rancid or Natkit).

• Use Rancid to collect all core and distribution configurations every 15 min, all access configurations every 24 hours.

• This is like FW, only install RANCID if you intend to have one engineer responsible for following up config changes.

http://www.shrubbery.net/rancid/
Agenda

• Feature Overview

• Box security
 SNMP, pwd recovery, telnet/consol

• Networking protocols
 IGP, EGP, HSRP, VRRP, Spanning-tree, cdp, ip spoofing

• User protection
 Security between users
Networking protocol security

CDP [Cisco Discovery Protocol] security
CDP security, function

- Cdp is Cisco proprietary

 An L2 protocol informing the neighbour of the device existence. CDP works over different media. Gives information regarding ip address, physical port, sw version, hw platform.

- In the ETTx environment (many L2 switches) CDP is an outstanding feature
CDP security, function

```
ds1-sto1-se> (enable) sh cdp nei det
Port (Our Port): 1/1
Device-ID: cr1.sto1.se
Device Addresses:
  IP Address: 197.154.18.1
Holdtime: 169 sec
Capabilities: ROUTER
Version:
  Cisco Internetwork Operating System Software
  IOS (tm) GS Software (GSR-K4P-M), Version 12.0(21)S1, EARLY DEPLOYMENT RELEASE SOFTWARE (fc1)
  TAC Support: http://www.cisco.com/tac
  Copyright (c) 1986-2002 by cisco Systems, Inc.
  Compiled Tue 19-Feb-02 14:47 by nmasa
Platform: cisco 12016/GRP
Port-ID (Port on Neighbors's Device): GigabitEthernet0/0
VTP Management Domain: unknown
Native VLAN: unknown
Duplex: unknown
System Name: unknown
System Object ID: unknown
Management Addresses: unknown
Physical Location: unknown
```
CDP security, attack

- **Linux**

 Unfortunately there are Linux sw that floods cdp updates full of crap

- **BUG**

 In some old IOS releases there are no limitations on how many cdp entries there can be in the memory. This fact can cause malloc failures, and even a complete crash of the switch/router.

- **CDP can consume all memory**

 Solved in recent IOS releases
CDP security, solution

• Since CDP only can traverse one L2-hop, the workaround is pretty simple:

• Turn off CDP on all customer ports!!!

On each customer port:

interface FastEthernet0/2
description ****** clientport ******
no cdp enable
Network protocol security

Spanning tree security
Spanning tree security

- Spanning tree is the protocol used to avoid loops in an L2 environment.
- Almost all traffic will pass via the root bridge.
- Normally the root bridge is the same as or a switch close to the L3 device (the default gateway).
Spanning tree security, attack

Evil user configures his home switch to advertise itself with a spanning tree priority of 1.

Evil user configures a loop using two wireless access points, or just a cat5 patch cable.

Spanning tree root
HSRP active (default gateway)

Spanning tree root backup

Spanning tree blocking should now occur here

Normal traffic flow

Spanning tree blocking will now occur here

New traffic path, gives the evil user the possibility to snoop the traffic

Normal traffic flow
Spanning tree security, attack prevention 1

Metro Ethernet Security

- This attack will not work in a properly designed ETTx network
 - No trunk towards the customer
 - Different vlans on each switch in the ring

- To avoid people trying to mess with the spanning tree in the network, configure bpdu-guard or bpdu-filter on the end user ports
 - Even if it isn’t possible to create a “man-in-the-middle” scenario an attack might cause problems
Spanning tree security, attack prevention 2

On each 2950 port:
- spanning-tree portfast bpduuard default
- interface FastEthernet0/2
description ****** clientport ******
- spanning-tree portfast

From the configuration guide:
At the global level, you can enable BPDU guard on Port Fast-enabled ports by using the `spanning-tree portfast bpduguard default` global configuration command. Receiving a BPDU on a Port Fast-enabled port signals an invalid configuration, such as the connection of an unauthorized device, and the BPDU guard feature puts the port in the error-disabled state.
Networking protocol Security

Routing protocol security
Routing protocol security

• If the network is properly designed, there will be no IGP running on the end user vlans.

• If your design requires an IGP to be run on the customer vlan, MD5 authentication together with passive interface should be used.
Networking protocol Security

HSRP [Hot Standby Routing Protocol] security
HSRP security

- HSRP is a Cisco proprietary solution for redundant gateways
- HSRP was designed before VRRP was available
HSRP security

- HSRP today relies on a clear text password
- With older code, a router went to standby even if it received an update with the wrong password (if the update had a better or the same priority)
- There is (no) way to stop end users from snooping hsrp passwords
HSRP security feature enhancement

• HSRP packets will have support for encrypted password in the future
HSRP security, solution

- A switch that supports inbound acl
- Deny all hsrp traffic from the customer [udp port 1985]
- Always configure a priority of 255 on your primary, and 254 on your standby router
- Customer will still see hsrp hellos, but will not be able to inject

On each 2950/3550:

```
Access-list 101 deny udp any any eq 1985
Access-list 101 permit ip any any
!
interface FastEthernet0/2
  description ***** clientport *****
  Ip access-group 101 in
```
Networking protocol Security

ICMP redirect
ICMP redirect

- ICMP is a control protocol within the IP stack
- ICMP redirect gives the possibility to reroute traffic
- This is not a threat in a correct designed network
ICMP redirect

Fully automated based on routing table entries

171.1.1.0/24

191.168.10.2

191.168.10.1

Internet

New optimised traffic path

ICMP redirect, for 171.1.1.0/24 use 191.168.10.2 instead

191.168.10.233

191.168.10.222

GW 192.168.10.1

Normal traffic flow
ICMP redirect

What if…

171.1.1.0/24

New bogus traffic path

191.168.10.233
ICMP redirect, for 171.1.1.0/24 use 191.168.10.233 instead

191.168.10.1

191.168.10.222
GW 192.168.10.1

Normal traffic flow

Internet

191.168.10.222
GW 192.168.10.1
ICMP redirect

What if…

Internet

171.1.1.0/24

Local-proxy-arp will kick in. Router will look in his routing table and will forward the traffic to the Internet, not to the attacker.

ICMP redirect, for 171.1.1.0/24 use 191.168.10.233 instead

191.168.10.1

191.168.10.233

191.168.10.222

GW 192.168.10.1

Normal traffic flow

Private Vlan / port protect and local-proxy-arp will stop this
Multicast security
The definition of Multicast is:

1. If you send to group address, all members receive it
2. You must be a “member” of a group to receive its data
3. You do not have to be a member of a group to send to a group!!

What if you are running a multicasted tv service, and every customer were able to interfere with the content!
Multicast security, solution 1

- Configure a VACL to filter out multicast from the customers

```snippet
ds1-row1-lab> (enable) set security acl ip ettx_vacl permit IGMP any any

ds1-row1-lab> (enable) set security acl ip ettx_vacl permit ip legal_source_network 224.100.0.0 15.128.255.255

ds1-row1-lab> (enable) set security acl ip ettx_vacl deny ip any 224.100.0.0 15.128.255.255
```

- Run MVR [Multicast Vlan Registration for the tv channels.

 The leaking mechanism in MVR will prevent customers from interfering with the tv content (no multicast configured on the end user vlan)

http://www.cisco.com/univercd/cc/td/doc/product/lan/c2900xl/29_35wc4/sc/swsyst.htm#xtocid40
Multicast security, solution 2

- SSM, source specific multicast and IGMP v3 would solve these problems

 Unfortunately there is very limited support for IGMP v3 and SSM on the set-top-box market today

 Running IGMP v3 it is up to the application to sort out that the content comes from the correct source
Networking protocol Security

Pay per view security
Pay per view security

- In the legacy cable tv / digital tv network, there is a problem today with people using “smart-cards” to watch channels they haven’t paid for.
- As soon as we rely on the security in a box that the customer has control over (placed in the customers home) there will be a risk for hacking.
Pay per view security, igmp filtering

- On Switches we have the possibility to create igmp filters per port
- This gives us the possibility to turn on/off multicast channels per group and per port
- This is all done using SNMP set

 which makes it very easy for the service provider to integrate it in to their existing management / provisioning systems
Pay per view security, igmp filtering

Supported on 2950, 3550 and the 4000

Requires MVR on the 2950/3550 !!!

SNMP set allow 239.100.1.25
SNMP set allow 239.100.1.1

http://www.cisco.com/univercd/cc/td/doc/product/lan/cat2950/1219ea1/scg/swigmp.htm#xtocid21
Networking protocol Security

IP source spoofing
Ip source spoofing

• Some users tries to change their ip address to a static one
• This can be because lack of knowledge, or a way to hide an attack
Ip source spoofing, attack

- Sourcing packets with a completely different network address, fooling acl, DoS attacks
- Sourcing packets with another customers ip address from the vlan he should belong to (to be able to both send and receive traffic)
Ip source spoofing, uRPF

• On Routers it is possible to use uRPF [Unicast Reverse Path Forwarding]

Will prevent ip addresses from another subnet
Will not stop “stealing” another ip address in the same vlan
Ip source spoofing, uRPF 1

A closer look: RPF Check Fails

Packet from Source 151.10.3.21

Packet Arrived on Wrong Interface!

Discard Packet!
Ip source spoofing, uRPF 2

uRPF can be pretty cpu intensive

On all customer vlan in the 6500:

```
interface Vlan 30
description ***** client_vlan *****
ip verify unicast source reachable-via rx allow-self-ping
```

From the uRPF configuration guide:

The Unicast RPF feature helps to mitigate problems that are caused by the introduction of malformed or forged (spoofed) IP source addresses into a network by forwarding only packets that have source addresses that are valid and consistent with the IP routing table.
IP Source Guard

- Automatically load Port ACLs and optionally port security tables with information learned from DHCP snooping
- Just like Dynamic ARP inspection, but for IP source address

IP source filter and mac security configured on port
Agenda

• Feature Overview

• Box security
 SNMP, pwd recovery, telnet/consol

• Networking protocols
 IGP, EGP, HSRP, VRRP, Spanning-tree, cdp, ip spoofing

• User protection
 Security between users, user traceability
User protection

Traceability
• In this type of network, it is extremely important to be able to trace the users

• The users have a lot of bandwidth, and can do nasty things against others

• We need to have a database of who had what IP address at what time
DHCP Interface Tracker (Option 82)

- DHCP Relay agent allows a router to insert information about itself when forwarding client DHCP packet to a DHCP server.
- Every LAN switch has its own signature into the packet, Switch MAC address (remote-id), Port SNMP ifindex on 3550 (circuit id option), Module, Port, VLAN on 4K (circuit id).

3550#configure terminal
3550(config)# ip dhcp relay information option

- Catalyst 4500 IOS requires DHCP snooping for Option 82. Option 82: Module, VLAN, port is included with DHCP snooping.
ARP security

- Before a pc can talk to another pc it must do an arp request to map the ip address to the physical [mac] address
- This arp request is a broadcast using ip protocol 0806
- All computers on the subnet will receive and process the arp request. The station that matches the ip address in the request will send an arp reply
Arp security, gratuitous arp

- According to the arp rfc, a client is allowed to send an arp reply even if there hasn’t been a request. This is called a gratuitous arp. Other hosts on the same subnet can use this information and store it in its cache.

A gratuitous arp can be a unicast to another PC on the subnet, will not be detected by the MSFC

Hey everyone I’m host A and my IP Address is 192.168.1.1 and my MAC address is 00:03:47:8e:73:fd
Arp security, gratuitous arp miss-use 1

- The arp rfc is from the time when everyone in a network was “friendly”
- There is no built in security in the arp function
- Anyone can claim to be the owner of any ip / mac address they like
• What about if someone tries to steal an already used IP/MAC address?

Hey 0007.0eb4.20b7 my IP Address is 192.168.10.1 and my MAC address is 00:03:47:8e:73:fd

The router will just ignore this packet, and will not generate a duplicate IP address alarm.

The ARP table of PC .2 is compromised. All outgoing traffic will go via PC .3, that transparent forwards the traffic to the router.
Arp security, gratuitous arp miss-use 3

- All Traffic now flows through machine launching the attack

 Not quite a true sniffer trace but fairly close (simplex)

- Port security doesn’t help

 We are using our own mac address, the switch we are connected to can’t identify this as a faulty packet

- Note that attack could be generated in the opposite direction attacking the router to be able to sniff both directions of the stream
Arp security, gratuitous arp, tricky to use?

- At first this kind of attack seems pretty complex to launch
- Nice people on the internet have built tools for this, ettercap and dsniff are examples
- Ettercap includes a gui and spoofs both directions by default
- Dsniff includes “web mirroring” tools as well as “password sniffer” tools.

[Links]
http://www.monkey.org/~dugsong/dsniff
http://ettercap.sourceforge.net
Arp security, protection 1

- Configuring static arp
 Many operating systems will still accept the gratuitous arp and flag the new entry as static

- Port security
 No help since all information on packet header level is valid (using our own mac address)

- Protected port (private vlan edge)
 As long as the vlan only exists on one switch, pvlan edge will protect other PCs, unfortunately it will not protect the router from being spoofed
Arp security, protection 2

• **Re-use of vlans**

 If the user vlan spans over more then one switch it is possible for an attacker to spoof clients on other switches, as long as they belong to the same vlan

 (this is one of the major drawbacks of re-using vlans)

• **Arp security features**

 Secured arp tables, wouldn’t that be nice?
Dynamic ARP Inspection

- Uses an access list to permit or deny certain IP/MAC associations in the ARP table.
- A binding table containing IP-address and MAC-address associations may be statically configured or dynamically populated using DHCP Snooping.
- ARP ACLs deny (and optionally log) all invalid IP/MAC binding attempts.
Dynamic ARP Inspection

- DAI Keeps Track of the DHCP Discovery
- DHCP Discovery Broadcast
- DHCP Server
Dynamic ARP Inspection

DAI Looks at the DHCP Offer, and validates the incoming ARP Entry for the MAC-IP Pair. This is How the ARP Table Is Populated.

Non DHCP packets may be supported by ARP ACLs

Supported on access and MVAP (Multi VLAN Access Ports) ports. Private VLANs and routed ports coming later.
Dynamic ARP Inspection

// Configure on VLANs 2 to 10

4500(config)#ip dhcp snooping
4500(config)#ip dhcp snoop vlan 2-10
4500(config)#ip arp inspection vlan 2-10

4500(config)#interface gi2/1
4500(config-if)#ip arp inspection limit rate 100 // pps
DHCP server spoofing
DHCP spoofing, attack 1

DHCP offer
Ip: 10.1.1.20 /24
Gw: 10.1.1.1
DNS: 192.168.1.122

DHCP discovery
Ip helper 195.11.2.1

Broadcast

Traffic flow

192.168.1.1 /24

192.168.1.122

Starts listening to 10.1.1.1 as well
Starts a bogus DNS server

Port protect will prevent this
DHCP spoofing, attack 2

Both switches belonging to the same VLAN, same broadcast domain

DHCP discovery

Broadcast

Victim

192.168.1.1 /24
Ip helper 195.11.2.1

192.168.2 /24
Ip helper 195.11.2.1

Attacker

192.168.1.122

Starts listening to 10.1.1.1 as well
Starts a bogus DNS server

DHCP offer
Ip: 10.1.1.20 /24
Gw: 10.1.1.1
DNS: 192.168.1.122

VACL that redirect all broadcast frames to 15/1 will prevent this
Switch Authentication
802.1X/EAP Switch Authentication

802.1x and EAP (Extensible Authentication Protocol) can authenticate a device before allowing access to a switch and can assign a VLAN after authentication.

- EAP allows different authentication types to use the same format (TLS, MD5, OTP, PEAP)
- Works between the **supplicant** (client) and the **authenticator** (network device)
- Maintains backend communication to an **authentication (RADIUS) server**
- The authenticator (switch) becomes the middleman for relaying EAP received in 802.1x packets to an authentication server by using RADIUS to carry the EAP information
- Available on Cat 29XXG, 4K, 6K in CatOS 6.2; Cat 3550 in 12.1(4)EA1; Cat 2950 in 12.1(6)EA2; 4K IOS in 12.1(12c)EW; 6K IOS in 12.1(13)EW
802.1X Port Authentication

- Request ID
- Send ID/Password
 - Accept
 - Forward Credentials to ACS Server
 - Authentication Successful

EAP (many types: MD5, TLS, PEAP, etc.)

- 802.1x
- RADIUS
802.1X/EAP Deployment Considerations

- Current software stability

Windows 802.1X Clients have DHCP bug

802.1X is independent of DHCP which sometimes results in a link-local address on the client after authentication

All code is new and will likely have a few issues the early adopters will find

Specification issues with 802.1X finite state machine: http://www.cs.umd.edu/~waa/1x.pdf

To be addressed in 802.1aa
802.1X/EAP Deployment Considerations

Deployment/security considerations

Understand what you are getting: 802.1X provides a MAC ACL-based on user/device credentials

MAC spoofing is easy (insert hub, etc.)

Many devices will not support 802.1X for some time (printers, certain OSs, etc.)

This means switch configurations will be filled with exceptions weakening security

Identity infrastructure (RADIUS, etc.) becomes essential to basic network operation

Remember 802.1X only protects against unauthorized access; if an attacker is willing to breach your physical location, will 802.1X provide enough value to justify the management burden?
802.1X/EAP Common Uses

- WLAN deployments
 Provides cryptographic key distribution which allows per frame encryption

- Wired network locations with no physical security
 If you can’t count on physical security to prevent individuals from gaining access to your LAN ports, 802.1X adds value

- Wired networks needing network user differentiation and mobility
 If you have a diverse set of users with differing network access requirements, 802.1X can allow VLAN assignment to follow a user wherever the connect in the network
Security approach

Are the security threats/solutions described in this presentation applicable only in the ETTx environment

???
Summary

- Carefully consider any time you must count on VLANs to operate in a security role

 If properly configured, our testing did not discover a method of VLAN hopping using Cisco switches

 Pay close attention to the configuration

 Understand the organizational implications

- Evaluate your security policy while considering the other issues raised in this session

 Is there room for improvement?

 What campus risks are acceptable based on your policy?

- Deploy, where appropriate, L2 security best practices
Summary

• We can today build a secure ETTx network
• It is extremely important to do the security homework before doing the overall design
• You can rely on Cisco Advanced Services to help here
For More Information

- Metro ethernet, control plane concept

- Ethernet the first mile whitepaper
Thank You!

- Lim Wong
 limwong@cisco.com

- Wojciech Dec
 wdec@cisco.com
VRRP security

- VRRP is the standardised solution for redundant gateways
- RFC 2338
VRRP security

- Hellos sent to 224.0.0.18, ttl 255
- IP protocol 112 is assigned by IANA
- The priority value for the VRRP router that owns the IP address(es) associated with the virtual router MUST be 255 (decimal)
VRRP security

- The protocol should ensure after Master election that no state transition is triggered by any Backup router of equal or lower preference as long as the Master continues to function properly.

- Exception is that the router that owns the IP address(es) associated with the virtual router always pre-empts independent of the setting of this flag.
VRRP security

The VRRP specification makes it much harder to launch an hijacking attack.