SCTP as Alternative Transport to TCP and UDP

Introduction

- High growth of Internet
- Most internet user are using HTTP
- HTTP uses TCP as transport Protocol
- SCTP as a newer transport protocol over few new features

Background Theory UDP

- No initialization
- Header is small
- Connectionless (no feature flow control, error control, retransmission)

Background Theory TCP

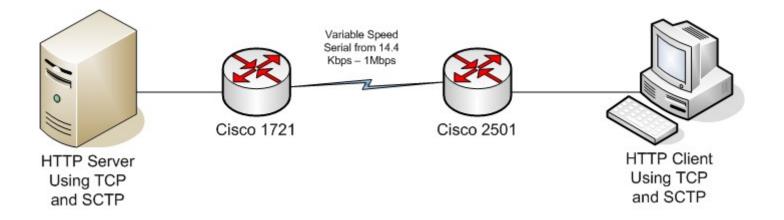
- Connection oriented
- Byte-stream protocol
- Initialization with three-way handshake
- Have a congestion control

Background Theory SCTP

- Started on 1997 as Multi-network Datagram Transmission Protocol (MDTP)
- October 2000 RFC 2960 SCTP
- Connection oriented
- Initialization with four-way handshake + Cookie
- Congestion control similar with TCP
- Introduce new feature : multi stream, multi homing

Background Theory Comparison UDP TCP SCTP

Service/Feature	SCTP	TCP	UDP
Full-duplex Data Transmission	Yes	Yes	Yes
Connection-oriented	Yes	Yes	No
Reliable Data Transfer	Yes	Yes	No
Partial Reliable data transfer	Optional	No	No
Ordered data delivery	Yes	Yes	No
Unordered data deliver	Yes	No	Yes
Flow and congestion control	Yes	Yes	No
Explicit congestion notification			
support	Yes	Yes	No
Selective acks	Yes	Optional	No
Preservation of message			
boundaries	Yes	No	Yes
Path maximum transmission unit			
discovery	Yes	Yes	No
Application data			
fragmentation/bundling	Yes	Yes	No
Multistreaming	Yes	No	No
Multihoming	Yes	No	No
Protection to SYN flooding attack	Yes	No	N/A
Half-closed Connection	No	Yes	N/A



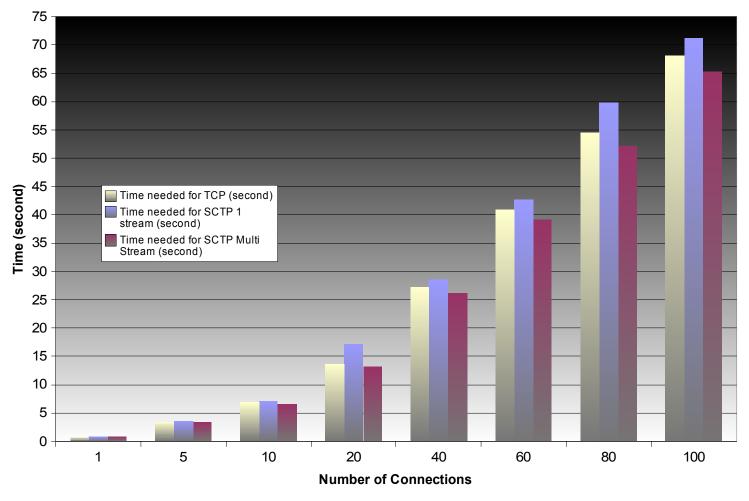
Environment

- Thttpd Web Server 2.25 (standard and with the SCTP patched) using PC pentium IV 2 Ghz
- Httperf Web Client (standard dan with SCTP patched) using notebook Centrino 1.7 Ghz
- Linux Ubuntu with kernel module SCTP
- Ethereal to analyze the packets
- Cisco Router 1721 dan 2501

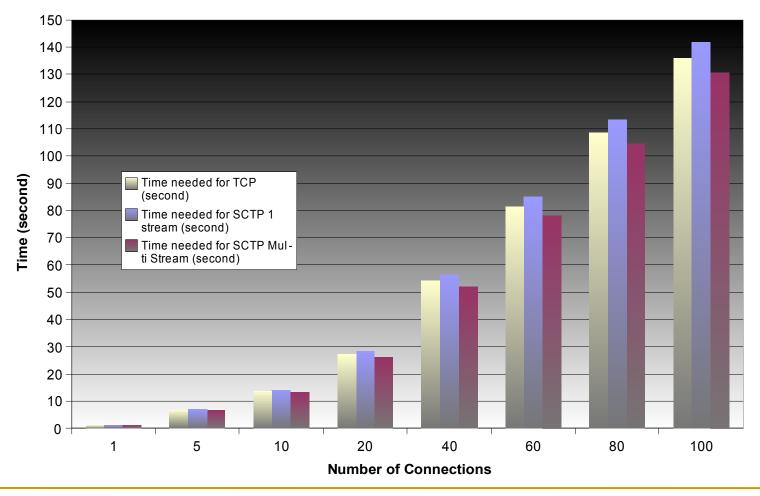
Physical Topology

Case Study

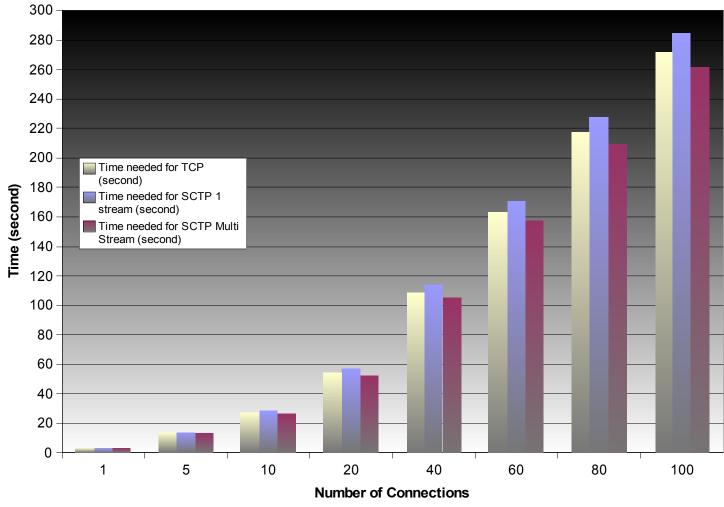
- Downloading HTML file with size 9KB using number of connection: 1, 5, 10, 20, 40, 60, 80, 100. Each variation using speed 14,4 Kbps, 32 Kbps, 64 Kbps, 128 Kbps
- Downloading binary file with size 6MB using variation speed of: 14,4 Kbps, 32 Kbps, 64 Kbps, 128 Kbps, 512 Kbps and 1 Mbps
- First test use TCP, SCTP 1 stream and SCTP multistream and second test using TCP and SCTP 1 stream

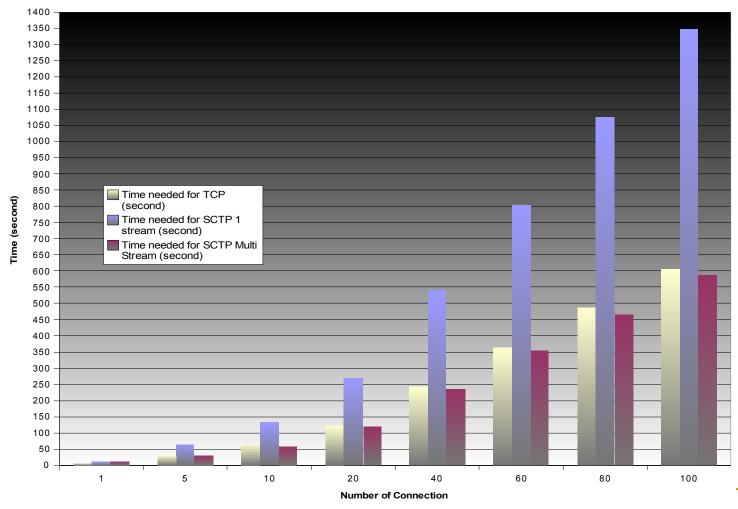

Test Result

Time for SCTP initialization is longer than TCP



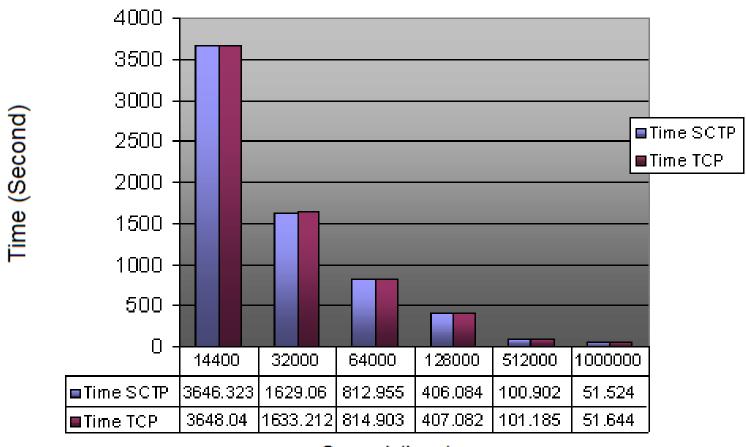
Test Result Speed 128 Kbps

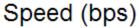



Test Result Speed 64 Kbps

Test Result Speed 32 Kbps

Test Result Speed 14,4 Kbps


Test Result Speed 14,4 Kbps Con't


- There is retransmission on SCTP 1 stream
- Timeout on HTTP witch SCTP module could be longer to improve performance

4 *REF*	192.168.1.100	192.168.3.3	SCTP	INIT
5 0.000123	192.168.3.3	192.168.1.100	SCTP	INIT_ACK
6 0.250712	192.168.1.100	192.168.3.3	SCTP	COOKIE_ECHO
7 0.250827	192.168.3.3	192.168.1.100	SCTP	COOKIE_ACK
8 0.349327	192.168.1.100	192.168.3.3	SCTP	DATA
9 0.349383	192.168.3.3	192.168.1.100	SCTP	SACK
10 0.349712	192.168.3.3	192.168.1.100	SCTP	DATA
11 0.349804	192.168.3.3	192.168.1.100	SCTP	DATA
12 0.349887	192.168.3.3	192.168.1.100	SCTP	DATA
13 0.350035	192.168.3.3	192.168.1.100	SCTP	DATA come neekst se cond
14 0.581331	192.168.1.100	192.168.3.3	SCTP	SACK same packet re-send
15 0.581397	192.168.3.3	192.168.1.100	SCTP	DATA
16 1.581122	192.168.3.3	192.168.1.100	SCTP	DATA same packet re-send
17 1.593972	192.168.1.100	192.168.3.3	SCTP	SACK
18 1.594013	192.168.3.3	192.168.1.100	SCTP	DATAsame packet re-send
19 1.594036	192.168.3.3	192.168.1.100	SCTP	DATA

Test Result Downloading Single Binary File

Test Result Sampling 50 Packet from Ethereal

50 packet sampling from Binary download test that show SCTP has a faster transfer speed compared to TCP

	50 Packet SCTP	50 Packet TCP	
Time to finish			
(second)	4.62078	4.79071	
Payload Data (bytes)	1400	1448	
Speed (bps)	121191.63	120900.74	

Test Result from other place

- Test Result from Pfützenreuter [PFU04] :
 - SCTP multistream have better performance compared to TCP or SCTP 1 stream.
 - TCP 1 stream is better compared to SCTP 1 stream
- Test Result from Osterdahl :
 - Similar result with Pfützenreuter

Summary

- Multi stream SCTP could minimize overhead on initialization phase and will give significant effect if more streaming used
- Single stream TCP is better than SCTP single stream on HTML file because overhead on SCTP single stream is larger
- SCTP with single stream shows better performance to TCP on downloading big binary file
- SCTP offer few new feature like security and high availability with performance not so different with TCP

Thank You

