Packet Level Traffic Visualisation: The Network Lava Lamp

Jamie Curtis, Richard Nelson University of Waikato, New Zealand APRICOT 2007

The most important part...

- what does our visualisation look like ?
- Then why we started working on visualisations
- How the visualisation works
- Finally, how could it be useful to you ?

- Why the "Network Lava Lamp" ?
 - Has the same addictive quality, once you start watching it's hard to look away
 - The more you watch it the more patterns you see

What does it look like ?

• Video 1

Video explanation

- Depicts a view of every packet crossing a single network link
- IP addresses space mapped onto planes
 - Each IP maps to a unique point on the plane
 - Typically internal on left and external on right
- Particles placed on vector from original packets source IP to destination IP
 - Direction determined by direction of packet across original link

Video explanation cont.

- Size of particle depends on size of packet
- •Colour of particle depends on protocol
- Speed of particle depends on RTT estimation
- Client has a simple control menu
 - Filtering packets by protocol (colour)
 - Adjust speed of packets
- Visualisation is a true 3D space that the user can move around in

Motivations

- WAND's history is in network simulation and measurement
 - NLANR's Active Measurement Project (AMP) is run by WAND members
- Designed DAG cards for passive monitoring
 - Endace started to continue DAG development
- •Been taking lots of header traces
 - Over 800 days of headers of every packet entering and leaving the University Campus (> 3TB traces)
 - Various other networks around the world

Visualisation History

- Visualisation project started to try to explore this huge dataset
- Started using Cichlid from NLANR, now a custom 3D engine because of speed constraints
- Visualisation is also now a tool to help explain networks and passive network analysis
- Acknowledgments:

Brendon Jones and Sam Jansen

Sebastian Dusterwald

Daniel Lawson, Perry Lorier, Shane Alcock

Power of Visualisations

- Easy enough for almost anyone to read after a simple explanation
- Humans are really good at visual pattern recognition
- Don't need to have much technical understanding to recognise unusual events
 - but with more experience and understanding you can interpret what the event indicates
- It's a fun, interesting (and very addictive) way to look at you network
 - while still being a useful tool

Pick the event

 Watch video 2 and see if you can pick the unusual event

SQL Slammer

- The video was taken from a live capture at the University of Waikato
- Very obvious at which point the machine was exploited
- BGP session died shortly afterwards because of the UDP flood
- Operators got BGP back up without realising the actual cause of the session dying
- Visualisation made it very obvious what the root cause really was

More examples

More videos of other types of scans and unusual traffic patterns

Visualisation Architecture

- Split into server and client packages
- Server is responsible for data collection and manipulation
- Client is responsible for data display

Visualisation Server

- Written in C for Unix platforms (primarily Linux)
- Server collects packets
 - PCAP and DAG (hardware capture) input sources
 - Capture from SPAN port or passive network tap
 - Can also replay captured traces
- Server optionally uses BPF to provide filtered views of the link
- Server attempts to estimate the RTT of the flows
 - It provides an appropriate multiplier to the client for speed based on this estimate

Server Modules

- Server uses replaceable modules to determine position, colour and direction
 - Complete packet passed to modules allowing modules to be arbitrarily complex
 - Can be as simple as looking at IP's, ports etc or as complex as L7 analysis
- Modules use libtrace API that makes writing them easy
- •libtrace is WAND's packet trace, capture and analysis library
 - All of the server is based around this library

Visualisation Client

- Written in OpenGL / C++ for Unix or Windows
- Server passes co-ordinates and colour information for client to display
- Client allows for interactive filtering based on colour
- Protocol between the client and server reduces traffic to approximately 6 bytes per packet
- Users can find out IP addresses by clicking on flow end-points

Example Customisations

- Colour doesn't have to refer to protocol
 - Server passes client the colour and label at startup
 - Could refer to department or division
 - L7 analysis could be used to colour based on file type of P2P (eg, movie, music, iso etc)
- Position modules can be tuned for the number of IP addresses expected on each side of the link
 - Layout each machine individually in a server farm with a picture of the host on the plane
 - Geographic IP placement for the "world" exists (but tends to clump IP's together too much)

Limitations

- •The visualisation can become cluttered
 - TCP or UDP packets without payload removed (ACKs)
 - Adjusting speed according to quantity of data
 - Adjusting size of particles
 - Pre-filtering input source at server
- Raw packet capture is often harder to obtain than netflow or similar
- It is a link visualisation
 - Packets have to travel in one of two directions on the link

Future

- More interactive customisation from the client
 - Pushing and pulling options between client and server
- Investigating netflow as input
 - Will lose the ability to do detailed analysis in modules
 - Will have to "fake" the packets out of the flow data
- Also working on separate visualisation focusing on topology analysis
- Always interested in working with Operators in any area of measurement and visualisation

Obtaining

- •Source to client, server and libtrace is all available under the GPL
- Client binaries for Windows available
- The visualisation package is called

"Brendon and Sams Online Display"

- or BSOD for short
- (Don't let students name their projects !)

http://research.wand.net.nz/

WAND Network Research Group Department of Computer Science The University of Waikato Private Bag 3105 Hamilton, New Zealand

> www.crc.net.nz www.wand.net.nz www.waikato.ac.nz

THE UNIVERSITY OF WAIKATO

Te Whare Wananga o Waikato