

Metro Ethernet deployments and challenges

Yogesh Jiandani (yogeshj@cisco.com) Consulting Systems Engineer, Cisco Systems

Agenda

- SP Ethernet and applications
- Metro Ethernet Basics and Service definitions
- Challenges and Approach to Metro Ethernet

What Is SP Metro Ethernet?

Benefits to Residential customers

Benefits to Business customers

- Ethernet everywhere in the LAN and the WAN
- Cheaper Bandwwwwidth
- New services viz L3VPN, L2VPN, Ethernet Private Line ..and more to come
 - Handle traffic according to business objectives
 - Support mix of different applications with different QoS requirements and traffic profiles – delay/jitter/loss/bandwidth/availability/sequence preservation – bursty & non-bursty traffic types

Not just connectivity... its all about packaging

Cisco.com

Apricot 2006

Agenda

- SP Ethernet and applications
- Metro Ethernet Basics and Service definitions
- Challenges and Approach to Metro Ethernet

Metro Ethernet Architecture and Terminology

Some Basic Metro Ethernet Concepts

- User Network Interface (UNI)—Demarcation point between service provider and service user responsibilities
- Ethernet Virtual Connection (EVC)—Association of two or more UNIs; frames can only be exchanged among the associated UNIs
- VLAN transparency—Ingress and egress customer VLANs are identical
- Layer 2 control protocol tunneling—The SP tunnels customer L2 control protocols in a manner that is consistent with the data packets
- Bundling—Multiple customer VLANs can map through a single Ethernet service on the UNI; all-toone bundling is a special case whereby all customer VLANs map to a single Ethernet service at the UNI
- Service multiplexing—The service provider can multiplex multiple EVCs per a single customer UNI

Ethernet Wire Service (EWS) – Leased Line equivalent

- Defines a point-to-point, port-based service
- No service multiplexing—"all-to-one" bundling
- Transparent to customer BPDUs
- Allows for over-subscription using stat muxing
- Routers and/or switches as CPE devices

Ethernet Private Line (EPL) – Leased line equivalent

- Defines a point-to-point, port-based service
- No service multiplexing—"all-to-one" bundling
- Transparent to customer BPDUs
- No oversubscription—delivered via EoS or WDM
- Routers and/or switches as CE devices

Ethernet Relay Service (ERS) – FR equivalent

- Defines a point-to-point service (analogous to Frame Relay using VLAN tags as VC IDs)
- Service multiplexed UNI (e.g., 802.1Q trunk)
- **Opaque** to customer PDUs (e.g., BPDUs)
- Recommend a router as CPE device

Ethernet Multipoint Service (EMS) a.k.a. VPLS

- Multipoint service where all devices are direct peers
- No service multiplexing—all VLANs are presented to all sites ("all-to-one" bundling)
- Transparent to customer BPDUs
- Also called transparent LAN service (TLS), E-LAN, or VPLS
- Routers and/or switches as CPE devices

L2 Access to the Internet and L3 VPN

- ERS UNI that maps to MPLS VPN on PE
- L3 multipoint service that maps VLANs to VRFs
- Service multiplexed UNI (e.g., 802.1Q trunk)
- Opaque to customer PDUs (e.g., BPDUs)
- Recommend a router as CPE device

Summary of Ethernet-based Services

Agenda

- SP Ethernet and applications
- Metro Ethernet Basics and Service definitions
- Challenges and Approach to Metro Ethernet

Residential & Business Service Ready Networks Challenges faced by SPs today

Polico-Service

Customer Equipment	UNI Definition	How to Build the Ethernet Access	How to Build the Interconnect Media
Enable Home- Networking Multiple SP support Residential & Business	Customer control protocol handling Service Definition LMI	Standard IEEE Bridges Customer VLAN transp. DSL/Wireless/Fiber MAC address scalability Redundancy OAM&P	MPLS/L2TPv3 Redundancy; PW – encap & signal. Auto-Discovery; EA & IM connection; OAM&P

Challenges of the Metro Ethernet Network Design

- Technology choice Switching/Optical, MPLS/L2TPv3 to the access or in the aggregation, Interworking with FR/ATM/LL
- Deployment Rings/FTTx based on density
- Where Upto the end customer or only for DSL aggregation
- Scaling # of VLANs and MAC addresses
- Security Preventing IP address theft, MAC address limiting, DHCP Snooping, DDOS,
- OAM Troubleshooting the service end to end
- QoS DSCP transparency, CAC for VoD
- Multicast Latency in joins
- Resiliency/Redundancy faster convergence in the access with standards based deployments

MEN Life Cycle

Solution choice based on business needs

Cisco.com

Apricot 2006

1) Start with the Service definition

2) Continue with SLA definitions

Cisco.com

Bandwidth profiles

Similar to Frame Relay—PIR/CIR/MBS

Well-known, simple—limited traffic differentiation and per application network capacity planning

Service classes

Differentiate and traffic-engineer accordingly

3) Look at the architecture approach

Cisco.com

Remember the KiSS principle

Case Study

CISCO SYSTEMS