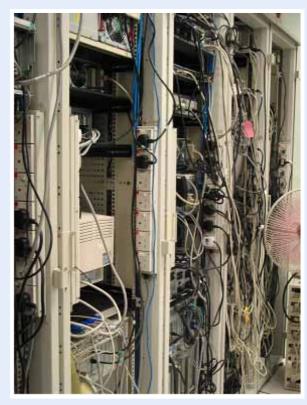
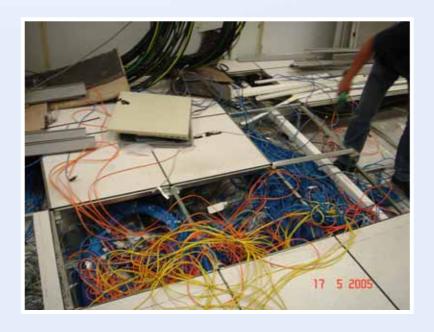


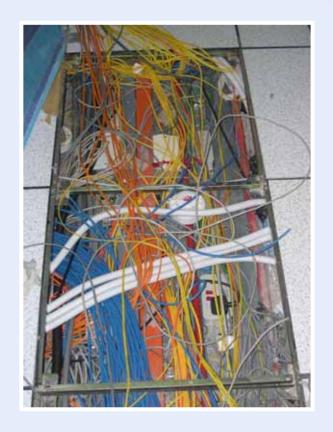
Contents

- I. Nostalgia
- II. Science of Elements in a


Data Centre

- III. NUS DC Live Migration the Art and Challenges
- IV. Milestones in Pictures
- V. What's next




• Electrical System

Raised Floor Cablings

• Air Conditioning System

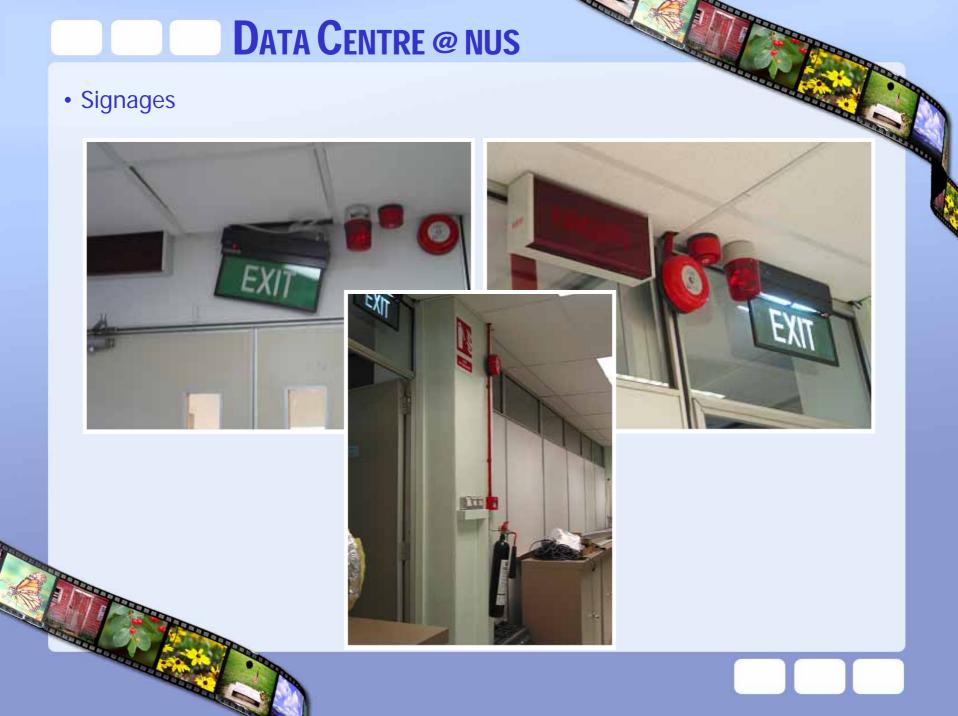
• UPS System

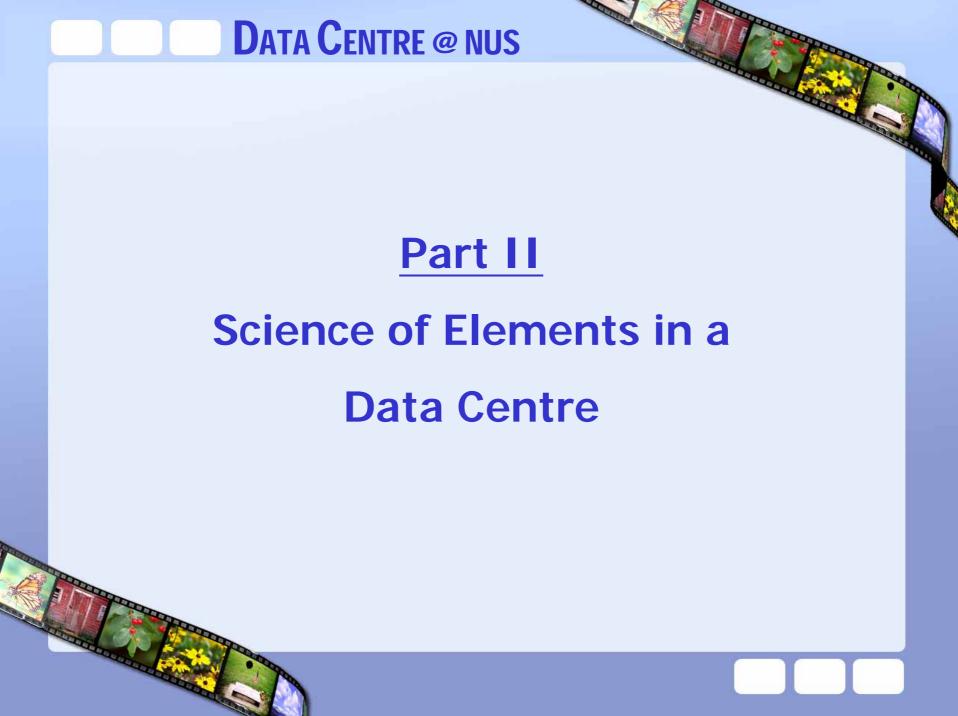
Layout and Space Utilization

Tape Library

Secure Printing of SmartCards

• Emergency Exits





• Surveillence Cameras

Critical Elements in a DataCentre

- Tiering of Data Centre
- IT Area Versus Non-IT area
- Ceiling Height and Raised Floor System
- Power Design (Supply + cabling)
- HVAC units (Temperature and Humidity)
- Fire Detection and Suppression
- Environmental Monitoring System
- Structural Loading
- Physical Security
- Structured Cabling
- Network Considerations

Tiering of Data Centre

•Defining the Tiers.

Tier I

Tier I is composed of a single path for power and cooling distribution, without redundant components, providing 99.671% availability.

Tier II

Tier II is composed of a single path for power and cooling distribution, with redundant components, providing 99.741% availability.

Tier III

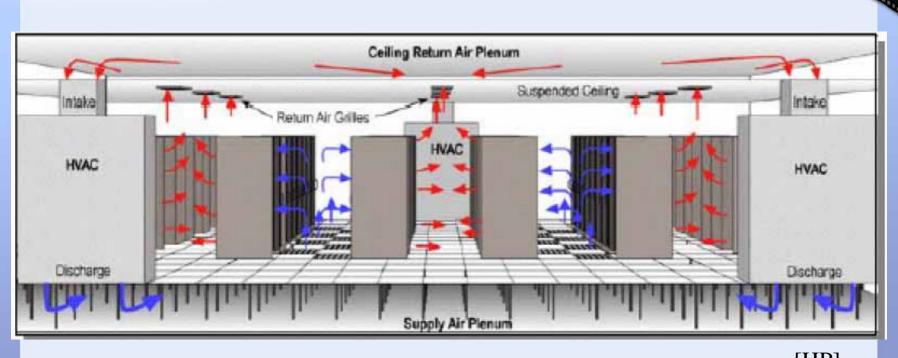
Tier III is composed of multiple active power and cooling distribution paths, but only one path active, has redundant components, and is concurrently maintainable, providing 99.982% availability.

Tier IV

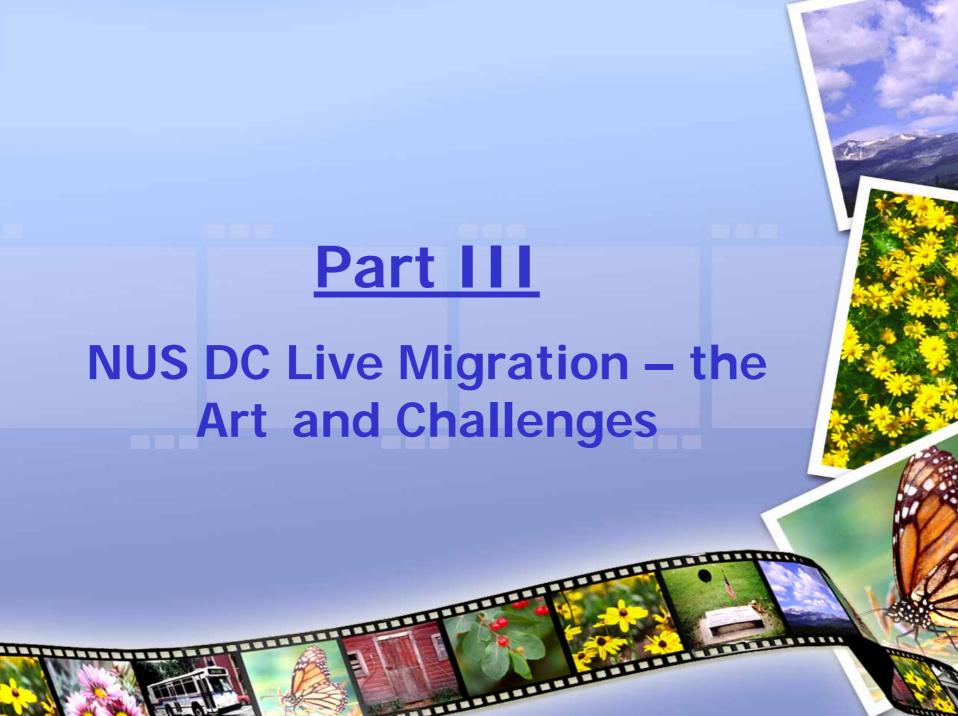
Tier IV is composed of multiple active power and cooling distribution paths, has redundant components, and is fault tolerant, providing 99.995% availability

This chart illustrates tier requirements:

	Tier I	Tier II	Tier III	Tier IV
Number of Delivery Paths	Only 1	Only 1	1 Active 1 Passive	2 Active
Redundancy	N	N + 1	N + 1	S + S or 2 (N + 1)
Compartmentalization	No	No	No	Yes
Concurrently Maintainable	No	No	Yes	Yes
Fault tolerance to Worst Event	None	None	None	Yes


This chart illlustrates the tier attributes of the sites from which the actual availability numbers were drawn:

,	Tier I	Tier II	Tier III	Tier IV
Building Type	Tenant	Tenant	Stand-alone	Stand-alone
Staffing	None	1 Shift	1 + Shifts	"24 by
				Forever"
Useable for Critical Load	100% N	100% N	90% N	90% N
Initial Gross Watts per Square Foot	20-30	40-50	40-60	50-80
(W/ft²) (typical)				
Ultimate Gross W/ft² (typical)	20-30	40-50	100-1501,2,3	150+ ^{1,2}
Uninterruptible Cooling	None	None	Maybe	Yes
Support Space to Raised-Floor Ratio	20%	30%	80-90% ²	100+%
Raised-Floor Height (typical)	12"	18"	30-36"2	30-36"2
Floor Loading lbs/ft² (typical)	85	100	150	150
Utility Voltage (typical)	208, 480	208, 480	12-15 kV ²	12-15 kV ²
Single Points-of Failure	Many +	Many +	Some +	None +
	human error	human error	human error	human error
Annual Site-Caused IT Downtime	28.8 hours	22.0 hours	1.6 hours	0.4 hours
(actuals)				
Site Availability	99.671%	99.749%	99.982%	99.995%
Months to Implement	3	3-6	15-20	15-20
Year First Deployed	1965	1970	1985	1995
Construction Cost (: 30%)12.3				
Raised Floor	S220/ft ²	\$220/ft ²	\$220/ft ²	\$220/ft ²
Useable UPS Output	\$10,000/kW	\$11,000/kW	\$20,000/kW	\$22,000/kW


 $^{-100\} W/ft^2\ maximum\ for\ air-ceeling\ over\ large\ areas,\ water\ or\ alternate\ cooling\ methods\ greater\ than\ 100\ W/ft^3\ (added\ cost\ excluded).$

⁴ Greater W/ft⁴ densities require greater support space (100% at 100 W/ft⁴ and up to 2 or more times at greater densities), higher raised floor, and, if required over large areas, medium voltage service entrance.

¹ Excludes land; architectural, engineering, and commissioning fees; permits and other fees; interest; and abnormal civil costs. These can be several million dollars. Assumes minimum of 15,000 fth of raised floor, architecturally plain, one-story building, with power backbone sized to achieve ultimate capacity with installation of additional components or systems. Make adjustments for NYC, Chicago, and other high cost areas.

[HP]

Key Considerations and Difficulties Encountered

- The datacentre must have minimal downtime as it is running live.
- Renovated DC must be able to cater for DC operation till year 2010.
- Deciding DC tier level.
- Maximising IT Area.
- Identifying possible/planned hot spot/area.
- Non-standard air flow racks/equipments.
- Inter-racks dependencies.
- Control/minimising dust in operating IT area during the renovation.
- Racks with weight overloading floor structural design.
- Air flow issues within a rack.
- Standardising racks design.
- Linkage of M&E vendors and IT vendors during renovation and IT migration in this live DC.

OLD DC

- Single incoming power source (electrical to IT)
- Standalone UPSes; not all equipment on UPS
- Equipments mostly on single UPS supply
- Insufficient cooling with no humidity control
- Generator does not meet existing IT load requirement
- No environmental monitoring system
- Building smoke detectors and Inergen gas system at selected areas
- Un-structured cablings

New DC

- Two different incoming power source to DC (electrical for IT)
- Centralized 2N UPS with individual isolation transformer supplying power to all IT equipments in DC
- Dual power source for all IT racks
- 400mm Raised Floor System
- Fire detection and protection systems FM200 and building smoke detectors
- Structured Cabling
- Hot & Cold aisles with ducted return
- Fire rated perimeters
- Stand alone earthing system
- CCTV Monitoring
- Contactless Door Access System

- Dedicated N+1 Crac units with humidity control, backup by a dedicated generator
- New generator for IT electrical supply
- EMS (temperature, humidity, water detection, PDU incoming and outgoing, crac units, FM200, etc)

Interesting Facts...

- Renovation Duration
 - : 1 Year
- DC NFA
 - : 720 sqm
- 60% attained IT Area

Security Contactless Card Access

>>

>>

>>

Security Cameras

>>

>>

>>

Two different incoming power source to DC

>> 0 >> 1 >> 2 >> 3 >> 4 >>

Centralized UPS for all IT equipment in DC

Dual power source for all IT racks

>>

>>

>>

Dedicated A/C with humidity control (backup by generator)

>> 0 >> 1 >> 2 >> 3 >> 4 >>

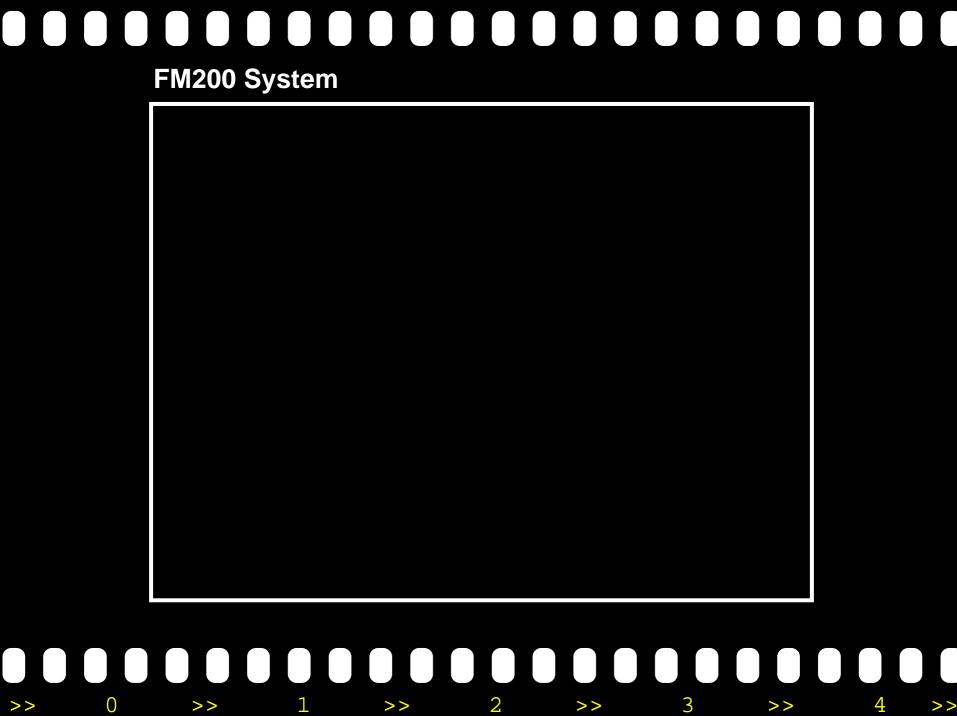
New generator for project IT electrical requirement

>> 0 >> 1 >> 2 >> 3 >> 4 >>

EMS (temperature, humidity, liquid detection, etc)

FM200 Gas Cylinders

FM200 Pipings above Ceiling Boards



>>

FM200 Release Nozzle on Ceiling Board

Water Detection Cable

>> 0 >> 1 >> 2 >> 3 >> 4 >>

Structured cabling below raised floor

>>

0

>>

1

>>

2

>>

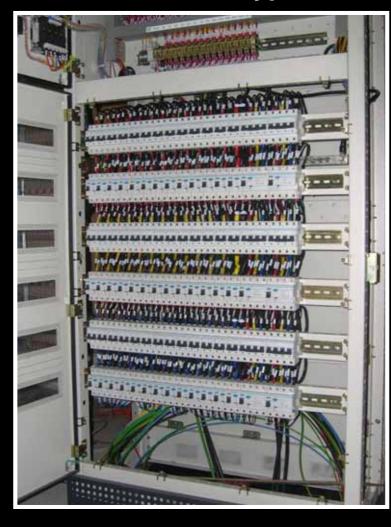
>>

4

>>

Network Cablings

Earth Cablings



Return Air Duct for CRAC

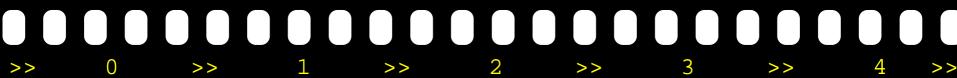
>> 0 >> 1 >> 2 >> 3 >> 4 >>

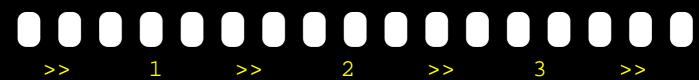
Internal View of a Typical PDU

Delivery of CRAC units

Phase-3

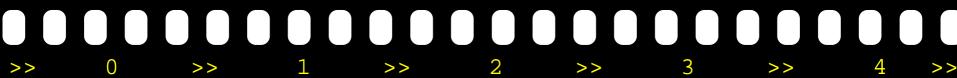
Phase-4




Media Room Entrance

Media Room

Network Room Entrance



Network Room

UPS Room

DATA CENTRE @ NUS

- DC @ NUS High School (NUSHS)
 - ✓ Disaster Recovery Site outside Kent Ridge Campus
 - ✓ Construction Duration: Jun Oct' 05 (4 mth)
 - \checkmark NFA = 800 sqm
 - ✓ Operational in Nov / Dec 2005

Primary Data Centre

- ✓ Able to cater to Computer Centre's 10-year IT plans
- ✓ Proposed NFA = 2,000 sqm
- ✓ Coming soon...

DATA CENTRE @ NUS

