<u>Modelling</u> Inter-Domain Routing

Olaf Maennel

University of Adelaide

Wolfgang Mühlbauer

Technical University Munich

Anja Feldmann Technical University Munich **Steve Uhlig** Université catholique de Louvain

Matthew Roughan

University of Adelaide

<u>Outline</u>

- 1. Why modelling inter-domain routing?
- 2. A model of the Internet
- 3. Some results
- 4. Conclusion

<u>Outline</u>

- 1. Why modelling inter-domain routing?
- 2. A model of the Internet
- 3. Some results
- 4. Conclusion

Why modelling inter-domain routing?

- Create models which are able to answer what-if questions
- Understand "policies" and their impact

Typology of what-if questions

Goal of our inter-domain model is to potentially predict an outcome of changes

For that we need to know

- how routes propagate through the network
- which policies are applied on alternative paths

Knowing that helps

- to predict impact of policy changes
- to predict traffic flows
- or to debug the network

What-if: BGP policies

Understand potential impact of changes in policy:

- Impact of cancelled peering?
- How to identify "good" new peerings?
- Possibilities to improve policy config, e.g.,
 - check outcome of network configuration
 - formulate abstract AS-wide routing policy
- Poor path selection, e.g.,
 - identify highly asymmetric paths
 - identify long paths
 - changed connectivity between ASes

<u>What-if: traffic flows</u>

Predict traffic flow with the help of simulations:

- Inter-domain:
 - Predict where traffic enters/leaves the network?
 - How can I balance traffic among my neighbors?
- Intra-domain:
 - How traffic flows within my network?
 - by simulating end-to-end traceroutes
 - IGP/BGP interactions

What-if: debugging

- Optimize network performance
- Locate Internet routing instabilities
- Detect problematic routing conditions
 - Tim Griffin's BGP wedgies
- Checking what you are doing:
 - check if the current state is the desired one
 - emulate a planned configuration/policy change

<u>Outline</u>

1. Why modelling inter-domain routing?

- 2. A model of the Internet
- 3. Some results
- 4. Conclusion

Build a model of the inter-domain routing system

Simulate BGP path propagation...

Compare observable (real) AS paths to simulation

"Simply" reproducing observable paths Simulation **Model** init Refinement real routing information

Premise:

Only observable paths 0 give us information about the AS-level topology and potential routing policies

Goal:

Reproduce paths in C-BGP simulator \bigcirc

<u>The C-BGP simulator</u>

Get rid of random decisions (lowest router-ID), when supporting information is available

Multiple paths must be propagated ... => need multiple routers in model!

How to propagate longer paths?

How to apply "our policies" ?? => filter shorter path on "longer path router" (at ingress)

How to propagate longer paths?

Propagate paths to appropriate neighbors!

How to propagate longer path?

Filter also on "egress"-part of shorter path router.

Lowest Neighbor ID

The decision was made by cBGP "randomly" => Fix random decision, if supporting information available

<u>Outline</u>

1. Why modelling inter-domain routing?

- 2. A model of the Internet
- 3. Some results
- 4. Conclusion

<u>Terminology</u>

• Best match:

0

- simulation selects a path that was observed in reality
- RIB-IN: simulation learns a path that was observed in reality, but did not pick that path as best
- not found: No router at the considered AS in the simulation learns about the path that was observed in reality
- training data set: paths that were used to build model (real observed paths)
- validation data set: paths that were unknown to the model, but that are real observed paths

Observation points

Training-Data-Set : used as input to model Validation-Data-Set : NOT used as input

Source	training	validation	total
Akamai	600	302	902
RIPE	239	120	359
RouteViews	65	28	93
GEANT	16	6	22
Abilene	8	2	10
SpaceNet	4	1	5
total	932	459	1391

Initial Results

Training Data-Set	% unique paths	
RIB-IN (learned)	99.99%	
best path (selected)	99.98%	
Validation Data-Set		
RIB-IN (learned)	93.84 %	
best path (selected)	63 %	

<u>Lessons learned</u>

Possible to model observable paths

- selecting the correct best path
- propagate path among possible alternatives
- Requirement: sufficient information
 - enough observation points
 - diverse location of observation points

=> It is possible to construct a model that can answers some what-if questions

What next?

63% of the paths in the validation data-set were correctly predicted.

> Reasons:

- We do not reverse engineer the Internet!
- We do not know the real policies!
- We "only" have policies which are <u>consistent</u> with our observations...

=> It is not easy to reverse engineer policies of any AS without sufficient observation points!

<u>Outline</u>

- 1. Why modelling inter-domain routing?
- 2. A model of the Internet
- 3. Some results
- 4. Conclusion

Conclusion

- C-BGP is a scalable simulator for large intra- and inter-domain topologies
- To answer what-if questions three information sources are required:
 - intra-domain topology (incl. router configs)
 - inter-domain topology (incl. local BGP views)
 - traffic information

> To make this practical, we need your help!

Thanks for your attention!